Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel R. Teixeira is active.

Publication


Featured researches published by Manuel R. Teixeira.


Clinical Cancer Research | 2004

A quantitative Promoter methylation profile of prostate cancer

Carmen Jerónimo; Rui Henrique; Mohammad O. Hoque; Elizabeth Mambo; Franclim R. Ribeiro; Graça Varzim; Jorge Oliveira; Manuel R. Teixeira; Carlos Lopes; David Sidransky

Purpose: Promoter hypermethylation is an alternative pathway for gene silencing in neoplastic cells and a promising cancer detection marker. Although quantitative methylation-specific PCR (QMSP) of the GSTP1 promoter has demonstrated near perfect specificity for cancer detection in prostate biopsies, we postulated that identification and characterization of additional methylation markers might further improve its high (80–90%) sensitivity. Experimental Design: We surveyed nine gene promoters (GSTP1, MGMT, p14/ARF, p16/CDKN2A, RASSF1A, APC, TIMP3, S100A2, and CRBP1) by QMSP in tissue DNA from 118 prostate carcinomas, 38 paired high-grade prostatic intraepithelial neoplasias (HGPIN), and 30 benign prostatic hyperplasias (BPH). The methylation levels were calculated and were correlated with clinical and pathologic indicators. Results: Only the methylation frequencies of GSTP1 and APC were significantly higher in prostate carcinoma compared with BPH (P < 0.001). Methylation levels of GSTP1, APC, RASSF1A, and CRBP1, differed significantly between prostate carcinoma and HGPIN, and/or HGPIN or BPH (P < 0.0001).With QMSP and empirically defined cutoff values, the combined use of GSTP1 and APC demonstrated a theoretical sensitivity of 98.3% for prostate carcinoma, with 100% specificity. Methylation levels were found to correlate with tumor grade (GSTP1 and APC) and stage (GSTP1, RASSF1A, and APC). Conclusions: Our data demonstrate the existence of a progressive increase of promoter methylation levels of several cancer-related genes in prostate carcinogenesis, providing additional markers to augment molecular detection of prostate carcinoma. Because methylation levels of GSTP1, APC, and RASSF1A are associated with advanced grade and stage, QMSP might augment the pathologic indicators currently used to predict tumor aggressiveness.


Cancer Research | 2005

SMARCB1/INI1 tumor suppressor gene is frequently inactivated in epithelioid sarcomas

Piergiorgio Modena; Elena Lualdi; Federica Facchinetti; Lisa Galli; Manuel R. Teixeira; Silvana Pilotti; Gabriella Sozzi

Epithelioid sarcoma is a rare soft tissue neoplasm of uncertain lineage that usually arises in the distal extremities of adults, presents a high rate of recurrences and metastases and frequently poses diagnostic dilemmas. The recently reported large-cell proximal-type variant is characterized by increased aggressiveness, deep location, preferential occurrence in proximal/axial regions of older patients, and rhabdoid features. Previous cytogenetic studies indicated that the most frequent alterations associated with this tumor entity affect chromosome 22. In this study, combined spectral karyotyping, fluorescence in situ hybridization, and array-based comparative genomic hybridization analyses of two proximal-type cases harboring a rearrangement involving 10q26 and 22q11 revealed that the 22q11 breakpoints were located in a 150-kb region containing the SMARCB1/INI1 gene, and that homozygous deletion of the gene was present in the tumor tissue. The SMARCB1/INI1 gene encodes for an invariant subunit of SWI/SNF chromatin remodeling complex and has been previously reported to act as a tumor suppressor gene frequently inactivated in infantile malignant rhabdoid tumors. We analyzed SMARCB1/INI1 gene status in nine additional epithelioid sarcoma cases (four proximal types and five conventional types) and altogether we identified deletions of SMARCB1/INI1 gene in 5 of 11 cases, all proximal types. We confirmed and further extended the number of cases with SMARCB1/INI1 inactivation to 6 of 11 cases, by real-time quantitative PCR analysis of mRNA expression and by SMARCB1/INI1 immunohistochemistry. Overall, these results point to SMARCB1/INI1 gene involvement in the genesis and/or progression of epithelioid sarcomas. Analysis of larger series of epithelioid sarcomas will be necessary to highlight putative clinically relevant features related to SMARCB1/INI1 inactivation.


Genes, Chromosomes and Cancer | 2006

The order of genetic events associated with colorectal cancer progression inferred from meta-analysis of copy number changes

Chieu B. Diep; Kristine Kleivi; Franclim R. Ribeiro; Manuel R. Teixeira; Ole C. Lindgjærde; Ragnhild A. Lothe

To identify chromosomal aberrations that differentiate among the Dukes stages of colorectal cancer (CRC) as well as those that are responsible for the progression into liver metastases, we performed a meta‐analysis of data obtained from 31 comparative genomic hybridization (CGH) studies comprising a total of 859 CRCs. Individual copy number profiles for 373 primary tumors and 102 liver metastases were recorded and several statistical analyses, such as frequency, multivariate logistic regression, and trend tests, were performed. In addition, time of occurrence analysis was applied for the first time to copy number changes identified by CGH, and each genomic imbalance was thereby classified as an early or late event in colorectal tumorigenesis. By combining data from the different statistical tests, we present a novel genetic pathway for CRC progression that distinguishes the Dukes stages and identifies early and late events in both primary carcinomas and liver metastases. Results from the combined analyses suggest that losses at 17p and 18 and gains of 8q, 13q, and 20 occur early in the establishment of primary CRCs, whereas loss of 4p is associated with the transition from Dukes A to B–D. Deletion of 8p and gains of 7p and 17q are correlated with the transition from primary tumor to liver metastasis, whereas losses of 14q and gains of 1q, 11, 12p, and 19 are late events. We supplement these findings with a list of potential target genes for the specific alterations from a publicly available microarray expression dataset of CRC. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045‐2257/suppmat.


Clinical Cancer Research | 2004

Quantitative RARβ2 Hypermethylation: A Promising Prostate Cancer Marker

Carmen Jerónimo; Rui Henrique; Mohammad O. Hoque; Franclim R. Ribeiro; Jorge Oliveira; Daniel Fonseca; Manuel R. Teixeira; Carlos Lopes; David Sidransky

Retinoic acid receptor β2 (RARβ2) is a tumor suppressor gene frequently hypermethylated in several human neoplasms. To further characterize this epigenetic alteration in prostate cancer progression, we examined tumor tissue from 118 patients with prostate carcinoma (PCa), 38 paired high-grade prostatic intraepithelial neoplasias (HGPIN), and non-neoplastic prostate tissue from 30 patients with benign prostate hyperplasia (BPH), using quantitative methylation-specific PCR. We found RARβ2 hypermethylation in 97.5% of PCa, 94.7% of HGPIN, and 23.3% of BPH. Methylation levels were significantly higher in PCa compared with HGPIN and BPH (P < 0.00001). By establishing an empiric cutoff value, we were able to discriminate between neoplastic and non-neoplastic tissue, with 94.9% sensitivity and 100% specificity. Moreover, RARβ2 methylation levels correlated with higher pathological stage (r = 0.30, P = 0.0009). This quantitative assay represents a novel and promising molecular marker that may augment current approaches for prostate cancer detection.Retinoic acid receptor beta2 (RARbeta2) is a tumor suppressor gene frequently hypermethylated in several human neoplasms. To further characterize this epigenetic alteration in prostate cancer progression, we examined tumor tissue from 118 patients with prostate carcinoma (PCa), 38 paired high-grade prostatic intraepithelial neoplasias (HGPIN), and non-neoplastic prostate tissue from 30 patients with benign prostate hyperplasia (BPH), using quantitative methylation-specific PCR. We found RARbeta2 hypermethylation in 97.5% of PCa, 94.7% of HGPIN, and 23.3% of BPH. Methylation levels were significantly higher in PCa compared with HGPIN and BPH (P < 0.00001). By establishing an empiric cutoff value, we were able to discriminate between neoplastic and non-neoplastic tissue, with 94.9% sensitivity and 100% specificity. Moreover, RARbeta2 methylation levels correlated with higher pathological stage (r = 0.30, P = 0.0009). This quantitative assay represents a novel and promising molecular marker that may augment current approaches for prostate cancer detection.


Clinical Cancer Research | 2010

Three epigenetic biomarkers, GDF15, TMEFF2 and VIM, accurately predict bladder cancer from DNA-based analyses of urine samples.

Vera L. Costa; Rui Henrique; Stine A. Danielsen; Sara Duarte-Pereira; Mette Eknæs; Rolf I. Skotheim; Ângelo Rodrigues; José S. Magalhães; Jorge Oliveira; Ragnhild A. Lothe; Manuel R. Teixeira; Carmen Jerónimo; Guro E. Lind

Purpose: To identify a panel of epigenetic biomarkers for accurate bladder cancer (BlCa) detection in urine sediments. Experimental Design: Gene expression microarray analysis of BlCa cell lines treated with 5-aza-2′-deoxycytidine and trichostatin A as well as 26 tissue samples was used to identify a list of novel methylation candidates for BlCa. Methylation levels of candidate genes were quantified in 4 BlCa cell lines, 50 BlCa tissues, 20 normal bladder mucosas (NBM), and urine sediments from 51 BlCa patients and 20 healthy donors, 19 renal cancer patients, and 20 prostate cancer patients. Receiver operator characteristic curve analysis was used to assess the diagnostic performance of the gene panel. Results: GDF15, HSPA2, TMEFF2, and VIM were identified as epigenetic biomarkers for BlCa. The methylation levels were significantly higher in BlCa tissues than in NBM (P < 0.001) and the cancer specificity was retained in urine sediments (P < 0.001). A methylation panel comprising GDF15, TMEFF2, and VIM correctly identified BlCa tissues with 100% sensitivity and specificity. In urine samples, the panel achieved a sensitivity of 94% and specificity of 100% and an area under the curve of 0.975. The gene panel could discriminate BlCa from both healthy individuals and renal or prostate cancer patients (sensitivity, 94%; specificity, 90%). Conclusions: By using a genome-wide approach, we have identified a biomarker panel that allows for early and accurate noninvasive detection of BlCa using urine samples. Clin Cancer Res; 16(23); 5842–51. ©2010 AACR.


Analytical Cellular Pathology | 2006

ADAMTS1, CRABP1, and NR3C1 identified as epigenetically deregulated genes in colorectal tumorigenesis

Guro E. Lind; Kristine Kleivi; Gunn Iren Meling; Manuel R. Teixeira; Espen Thiis-Evensen; Torleiv O. Rognum; Ragnhild A. Lothe

Background: Gene silencing through CpG island hypermethylation is a major mechanism in cancer development. In the present study, we aimed to identify and validate novel target genes inactivated through promoter hypermethylation in colorectal tumor development. Methods: With the use of microarrays, the gene expression profiles of colon cancer cell lines before and after treatment with the demethylating agent 5-aza-2′-deoxycytidine were identified and compared. The expression of the responding genes was compared with microarray expression data of primary colorectal carcinomas. Four of these down-regulated genes were subjected to methylation-specific PCR, bisulphite sequencing, and quantitative gene expression analysis using tumors (n=198), normal tissues (n=44), and cell lines (n=30). Results: Twenty-one genes with a CpG island in their promoter responded to treatment in cell lines, and were simultaneously down-regulated in primary colorectal carcinomas. Among 20 colon cancer cell lines, hypermethylation was subsequently identified for three of four analyzed genes, ADAMTS1 (85%), CRABP1 (90%), and NR3C1 (35%). For the latter two genes, hypermethylation was significantly associated with absence or reduced gene expression. The methylation status of ADAMTS1, CRABP1, and NR3C1 was further investigated in 116 colorectal carcinomas and adenomas. Twenty-three of 63 (37%), 7/60 (12%), and 2/63 (3%) adenomas, as well as 37/52 (71%), 25/51 (49%), and 13/51 (25%) carcinomas were hypermethylated for the respective genes. These genes were unmethylated in tumors (n=82) from three other organs, prostate, testis, and kidney. Finally, analysis of normal colorectal mucosa demonstrated that the observed promoter hypermethylation was cancer-specific. Conclusion: By using a refined microarray screening approach we present three genes with cancer-specific hypermethylation in colorectal tumors, ADAMTS1, CRABP1, and NR3C1.


Genes, Chromosomes and Cancer | 1998

Cytogenetic comparison of primary tumors and lymph node metastases in breast cancer patients

Nikos Pandis; Manuel R. Teixeira; Adewale Adeyinka; Helen Rizou; Georgia Bardi; Fredrik Mertens; Johan A. Andersen; Lennart Bondeson; Kostas Sfikas; Hanne Qvist; Nikiforos Apostolikas; Felix Mitelman; Sverre Heim

Chromosome banding analysis of primary tumors and axillary lymph node metastases from 10 breast cancer patients revealed abnormal karyotypes in all samples with cytogenetic similarities between the primary tumor and the metastasis in all informative pairs. Although karyotypically unrelated clones were also found in the lymph node samples, they were less numerous than in the primary tumors, indicating that there was more genetic heterogeneity among the neoplastic cells in the primary than in the secondary tumors. On the other hand, some of the clones had become more complex in the metastases as a result of clonal evolution, and by and large these metastatic breast cancer cases had more karyotypic anomalies than do unselected primary breast carcinomas. Among the aberrations occurring more frequently, and that consequently may predispose to disease spread, were losses of chromosomes 17 and 22 and homogeneously staining regions, a cytogenetic sign of gene amplification. Genes Chromosomes Cancer 22:122–129, 1998.


Cancer Epidemiology, Biomarkers & Prevention | 2005

MT1G hypermethylation is associated with higher tumor stage in prostate cancer

Rui Henrique; Carmen Jerónimo; Mohammad O. Hoque; Shuji Nomoto; André Lopes Carvalho; Vera L. Costa; Jorge Oliveira; Manuel R. Teixeira; Carlos Lopes; David Sidransky

Purpose: Zinc is involved in several physiologic processes, including cell growth and proliferation. Although in normal prostate tissue zinc levels are high, there is a marked decrease in prostate cancer. Metallothioneins control the bioavailability of zinc and one isoform, MT1G, was reported down-regulated in prostate cancer. Here, we investigated whether promoter methylation might cause MT1G silencing in prostate cancer. Patients and Methods: The MT1G promoter was assessed by quantitative methylation-specific PCR on prospectively collected tissue samples from 121 patients with prostate cancer, 39 paired high-grade prostatic intraepithelial neoplasias (HGPIN), 29 patients with benign prostatic hyperplasia, 13 normal prostate tissue samples from cystoprostatectomy specimens, and prostate cancer cell lines. The methylation levels were calculated and were correlated with clinical and pathologic variables. Reverse transcription-PCR was done in cell lines to assess MT1G mRNA expression before and after demethylating treatment. Results: MT1G promoter hypermethylation was found in 29 of 121 prostate cancer, 5 of 39 HGPIN, 3 of 29 benign prostatic hyperplasia, and 0 of 13 normal prostate tissue samples. No significant differences in methylation frequencies or levels were found (P = 0.057, for both). Methylation levels were found to correlate with tumor stage but not with Gleason grade. MT1G hypermethylation was more frequent in prostate cancer that spread beyond the prostate capsule. All prostate cancer cell lines tested showed MT1G promoter methylation, but no differences in expression were apparent after demethylation. Conclusions: Our findings suggest that MT1G promoter methylation is associated with tumor aggressiveness in prostate cancer and it might be a marker of locally advanced disease.


Genes, Chromosomes and Cancer | 1998

Cytogenetic analysis shows that carcinosarcomas of the breast are of monoclonal origin

Manuel R. Teixeira; Hanne Qvist; Per J. Bøhler; Nikos Pandis; Sverre Heim

Carcinosarcoma of the breast is a rare biphasic neoplasm composed of a carcinomatous component contiguous or admixed with a pleomorphic spindle cell component. The issues of the histogenesis and clonal composition of carcinosarcomas have long been debated. We present the first cytogenetic characterization of mammary carcinosarcomas by analysis of eight tumor samples from two patients with this disease. In the first case, the same karyotypically complex clone, as well as evidence of clonal evolution, was found in samples from three separate areas of the primary tumor. The analysis of one intramammary and one axillary lymph node metastasis from the same patient, both showing only the sarcomatous tumor component, also revealed the common complex stemline and one of the two sidelines found in the primary tumor. The carcinosarcoma of the second patient contained six complex but karyotypically related clones unevenly distributed among the three samples examined. From this case, cells belonging to the carcinomatous and sarcomatous tumor components were separated by differential sedimentation and culturing in specific growth media. Analysis of both fractions showed largely the same karyotype, although one of the subclones was restricted to the epithelial component. Our findings indicate that the epithelial and mesenchymal components of mammary carcinosarcomas are both part of the neoplastic parenchyma and that they have evolved from a single common stem cell, in agreement with the hypothesis that the tumors are of monoclonal origin. Genes Chromosomes Cancer 22:145–151, 1998.


Molecular Cancer | 2010

Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci.

Marianne Berg; Trude H. Ågesen; Espen Thiis-Evensen; Marianne A. Merok; Manuel R. Teixeira; Morten H. Vatn; Arild Nesbakken; Rolf I. Skotheim; Ragnhild A. Lothe

BackgroundEstimates suggest that up to 30% of colorectal cancers (CRC) may develop due to an increased genetic risk. The mean age at diagnosis for CRC is about 70 years. Time of disease onset 20 years younger than the mean age is assumed to be indicative of genetic susceptibility. We have compared high resolution tumor genome copy number variation (CNV) (Roche NimbleGen, 385 000 oligo CGH array) in microsatellite stable (MSS) tumors from two age groups, including 23 young at onset patients without known hereditary syndromes and with a median age of 44 years (range: 28-53) and 17 elderly patients with median age 79 years (range: 69-87). Our aim was to identify differences in the tumor genomes between these groups and pinpoint potential susceptibility loci. Integration analysis of CNV and genome wide mRNA expression data, available for the same tumors, was performed to identify a restricted candidate gene list.ResultsThe total fraction of the genome with aberrant copy number, the overall genomic profile and the TP53 mutation spectrum were similar between the two age groups. However, both the number of chromosomal aberrations and the number of breakpoints differed significantly between the groups. Gains of 2q35, 10q21.3-22.1, 10q22.3 and 19q13.2-13.31 and losses from 1p31.3, 1q21.1, 2q21.2, 4p16.1-q28.3, 10p11.1 and 19p12, positions that in total contain more than 500 genes, were found significantly more often in the early onset group as compared to the late onset group. Integration analysis revealed a covariation of DNA copy number at these sites and mRNA expression for 107 of the genes. Seven of these genes, CLC, EIF4E, LTBP4, PLA2G12A, PPAT, RG9MTD2, and ZNF574, had significantly different mRNA expression comparing median expression levels across the transcriptome between the two groups.ConclusionsTen genomic loci, containing more than 500 protein coding genes, are identified as more often altered in tumors from early onset versus late onset CRC. Integration of genome and transcriptome data identifies seven novel candidate genes with the potential to identify an increased risk for CRC.

Collaboration


Dive into the Manuel R. Teixeira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johan A. Andersen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Carlos Lopes

Instituto Nacional de Saúde Dr. Ricardo Jorge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nuno Cerveira

Instituto Português de Oncologia Francisco Gentil

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franclim R. Ribeiro

Instituto Português de Oncologia Francisco Gentil

View shared research outputs
Researchain Logo
Decentralizing Knowledge