Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel Vidal-Sanz is active.

Publication


Featured researches published by Manuel Vidal-Sanz.


Investigative Ophthalmology & Visual Science | 2009

Brn3a as a Marker of Retinal Ganglion Cells: Qualitative and Quantitative Time Course Studies in Naïve and Optic Nerve-Injured Retinas

Francisco M. Nadal-Nicolás; Manuel Jiménez-López; Paloma Sobrado-Calvo; Leticia Nieto-Lopez; Isabel Cánovas-Martínez; Manuel Salinas-Navarro; Manuel Vidal-Sanz; Marta Agudo

PURPOSE To characterize Brn3a expression in adult albino rat retinal ganglion cells (RGCs) in naïve animals and in animals subjected to complete intraorbital optic nerve transection (IONT) or crush (IONC). METHODS Rats were divided into three groups, naïve, IONT, and IONC. Two-, 5-, 9-, or 14-day postlesion (dpl) retinas were examined for immunoreactivity for Brn3a. Before the injury, the RGCs were labeled with Fluorogold (FG; Fluorochrome, Corp. Denver, CO). Brn3a retinal expression was also determined by Western blot analysis. The proportion of RGCs double labeled with Brn3a and FG was determined in radial sections. The temporal course of reduction in Brn3a(+) RGCs and FG(+) RGCs induced by IONC or IONT was assessed by quantifying, in the same wholemounts, the number of surviving FG-labeled RGCs and Brn3a(+)RGCs at the mentioned time points. The total number of FG(+)RGCs was automatically counted in naïve and injured retinas (2 and 5 dpl) or estimated by manual quantification in retinas processed at 9 and 14 dpl. All Brn3a immunopositive RGCs were counted using an automatic routine specifically developed for this purpose. This protocol allowed, as well, the investigation of the spatial distribution of these neurons. RESULTS Brn3a(+) cells were only present in the ganglion cell layer and showed a spatial distribution comparable to that of FG(+) cells. In the naïve retinal wholemounts the mean (mean +/- SEM; n = 14) total number of FG(+)RGCs and Brn3a(+)RGCs was 80,251 +/- 2,210 and 83,449 +/- 4,541, respectively. Whereas in the radial sections, 92.2% of the FG(+)RGCs were also Brn3a(+), 4.4% of the RGCs were Brn3a(+)FG(-) and 3.4% were FG(+)Brn3a(-). Brn3a expression pattern was maintained in injured RGCs. The temporal course of Brn3a(+)RGC and FG(+)RGC loss induced by IONC or IONT followed a similar trend, but Brn3a(+)RGCs loss was detected earlier than that of FG(+)RGCs. Independent of the marker used to detect the RGCs, it was observed that their loss was quicker and more severe after IONT than after IONC. CONCLUSIONS Brn3a can be used as a reliable, efficient ex vivo marker to identify and quantify RGCs in control and optic nerve-injured retinas.


The Journal of Comparative Neurology | 1998

Ganglion cell loss in RCS rat retina: A result of compression of axons by contracting intraretinal vessels linked to the pigment epithelium

María Paz Villegas-Pérez; J.M. Lawrence; Manuel Vidal-Sanz; Matthew M. LaVail; Raymond D. Lund

In the dystrophic Royal College of Surgeons (RCS) rat retina, there is a progressive loss of photoreceptors. As a result, the retinal circulation becomes apposed to the retinal pigment epithelium (RPE) and neovascular formations develop. RPE and inner nuclear layer cells migrate along these vessels towards the retinal ganglion cell (RGC) layer. The retinal layers gradually become disrupted, and some of the RGC axon bundles involute into the retina. These bundles are always associated with blood vessels, and there is evidence of axon damage where they juxtapose.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Myelination transition zone astrocytes are constitutively phagocytic and have synuclein dependent reactivity in glaucoma

Judy V. Nguyen; Ileana Soto; Keun-Young Kim; Eric A. Bushong; Ericka Oglesby; Francisco J. Valiente-Soriano; Zhiyong Yang; Chung Ha O Davis; Joseph L. Bedont; Janice L. Son; John O. Wei; Vladimir L. Buchman; Donald J. Zack; Manuel Vidal-Sanz; Mark H. Ellisman; Nicholas Marsh-Armstrong

Optic nerve head (ONH) astrocytes have been proposed to play both protective and deleterious roles in glaucoma. We now show that, within the postlaminar ONH myelination transition zone (MTZ), there are astrocytes that normally express Mac-2 (also known as Lgals3 or galectin-3), a gene typically expressed only in phagocytic cells. Surprisingly, even in healthy mice, MTZ and other ONH astrocytes constitutive internalize large axonal evulsions that contain whole organelles. In mouse glaucoma models, MTZ astrocytes further up-regulate Mac-2 expression. During glaucomatous degeneration, there are dystrophic processes in the retina and optic nerve, including the MTZ, which contain protease resistant γ-synuclein. The increased Mac-2 expression by MTZ astrocytes during glaucoma likely depends on this γ-synuclein, as mice lacking γ-synuclein fail to up-regulate Mac-2 at the MTZ after elevation of intraocular pressure. These results suggest the possibility that a newly discovered normal degradative pathway for axons might contribute to glaucomatous neurodegeneration.


Vision Research | 2009

A computerized analysis of the entire retinal ganglion cell population and its spatial distribution in adult rats

Manuel Salinas-Navarro; Sergio Mayor-Torroglosa; Manuel Jiménez-López; Marcelino Avilés-Trigueros; T.M. Holmes; Raymond D. Lund; M. P. Villegas-Pérez; Manuel Vidal-Sanz

In adult albino (SD) and pigmented (PVG) rats the entire population of retinal ganglion cells (RGCs) was quantified and their spatial distribution analyzed using a computerized technique. RGCs were back-labelled from the optic nerves (ON) or the superior colliculi (SCi) with Fluorogold (FG). Numbers of RGCs labelled from the ON [SD: 82,818+/-3,949, n=27; PVG: 89,241+/-3,576, n=6) were comparable to those labelled from the SCi [SD: 81,486+/-4,340, n=37; PVG: 87,229+/-3,199; n=59]. Detailed methodology to provide cell density information at small scales demonstrated the presence of a horizontal region in the dorsal retina with highest densities, resembling a visual streak.


Experimental Eye Research | 2009

Effects of different neurotrophic factors on the survival of retinal ganglion cells after a complete intraorbital nerve crush injury: A quantitative in vivo study

Guillermo Parrilla-Reverter; Marta Agudo; Paloma Sobrado-Calvo; Manuel Salinas-Navarro; María Paz Villegas-Pérez; Manuel Vidal-Sanz

We examined in adult Sprague Dawley rats the loss of retinal ganglion cells (RGCs) induced by complete intraorbital optic nerve crush (IONC) as well as the effects of several neurotrophic factors to prevent IONC-induced RGC loss. Completeness of the IONC lesion was assessed by investigating the orthograde and retrograde transport of neuronal tracers applied to the origin and termination of the retinotectal pathway. RGC survival after IONC alone or combined with intraocular injection of the neurotrophic factors NT-4, BDNF or CNTF was quantified at survival intervals ranging from 5 to 12 days post-lesion (dpl) by identifying RGCs that had been pre-labelled with fluorogold (FG). RGC loss first appeared at 7dpl and by 12dpl only 32% of the RGC population remained in the retina. Intraocular administration of NT-4, BDNF or CNTF resulted in almost a complete protection against IONC-induced RGC loss by 7dpl, and the protection remained significant by 12dpl only for NT-4 and BDNF. We have analyzed these results taking into account our previous studies on the loss of RGCs induced by intraorbital optic nerve transection (IONT) and concluded that RGC loss induced by IONC is slower and less severe than that following IONT. Moreover, as for IONT-induced RGC loss, IONC-induced RGC loss may also be prevented with administration of NT-4, BDNF or CNTF, though for NT-4 and CNTF their neuroprotective effects differ depending on the injury type. Overall this data underscore the importance of the type of ON injury on the pattern of RGC degeneration as well as in their response to neuroprotective treatments.


Neuroscience | 2002

Retinal ganglion cell death after acute retinal ischemia is an ongoing process whose severity and duration depends on the duration of the insult.

M.P. Lafuente; María Paz Villegas-Pérez; Inmaculada Selles-Navarro; Sergio Mayor-Torroglosa; J Miralles de Imperial; Manuel Vidal-Sanz

In adult Sprague-Dawley rats we have investigated retinal ganglion cell survival after transient intervals of retinal ischemia of 30, 45, 60, 90 or 120 min duration, induced by ligature of the ophthalmic vessels. Animals were killed 5, 7, 14, 21, 30, 60, 90 or 180 days later and densities of surviving retinal ganglion cells were estimated in retinal whole mounts by counting cells labelled with diAsp. This dye was applied, 3 days prior to death, to the ocular stump of the intraorbitally transected optic nerve. We found that retinal ganglion cell loss after retinal ischemia proceeds for different lengths of time. All the ischemic intervals induced loss of retinal ganglion cells whose severity and duration was related to the length of the ischemic interval. Following 30 or 45 min of ischemia, cell loss lasted 14 days and caused the death of 46 or 50%, respectively, of the population of retinal ganglion cells. Sixty, 90 or 120 min of retinal ischemia were followed by a period of cell loss that lasted up to 90 days and caused the death of 75%, 87% or 99%, respectively, of the population of retinal ganglion cells. We conclude that retinal ganglion cell loss after retinal ischemia is an ongoing process that may last up to 3 months after the injury and that its severity and duration are determined by the ischemic interval.


Progress in Retinal and Eye Research | 2012

Understanding glaucomatous damage: Anatomical and functional data from ocular hypertensive rodent retinas

Manuel Vidal-Sanz; Manuel Salinas-Navarro; Francisco M. Nadal-Nicolás; Luis Alarcón-Martínez; F Javier Valiente-Soriano; Jaime Miralles de Imperial; Marcelino Avilés-Trigueros; Marta Agudo-Barriuso; María Paz Villegas-Pérez

Glaucoma, the second most common cause of blindness, is characterized by a progressive loss of retinal ganglion cells and their axons, with a concomitant loss of the visual field. Although the exact pathogenesis of glaucoma is not completely understood, a critical risk factor is the elevation, above normal values, of the intraocular pressure. Consequently, deciphering the anatomical and functional changes occurring in the rodent retina as a result of ocular hypertension has potential value, as it may help elucidate the pathology of retinal ganglion cell degeneration induced by glaucoma in humans. This paper predominantly reviews the cumulative information from our laboratorys previous, recent and ongoing studies, and discusses the deleterious anatomical and functional effects of ocular hypertension on retinal ganglion cells (RGCs) in adult rodents. In adult rats and mice, perilimbar and episcleral vein photocauterization induces ocular hypertension, which in turn results in devastating damage of the RGC population. In wide triangular sectors, preferentially located in the dorsal retina, RGCs lose their retrograde axonal transport, first by a functional impairment and after by mechanical causes. This axonal damage affects up to 80% of the RGC population, and eventually causes their death, with somal and intra-retinal axonal degeneration that resembles that observed after optic nerve crush. Importantly, while ocular hypertension affects the RGC population, it spares non-RGC neurons located in the ganglion cell layer of the retina. In addition, functional and morphological studies show permanent alterations of the inner and outer retinal layers, indicating that further to a crush-like injury of axon bundles in the optic nerve head there may by additional insults to the retina, perhaps of ischemic nature.


Journal of Neuroinflammation | 2012

IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma

Beatriz I. Gallego; Juan J. Salazar; Rosa de Hoz; Blanca Rojas; Ana I. Ramírez; Manuel Salinas-Navarro; Arturo Ortín-Martínez; Francisco J. Valiente-Soriano; Marcelino Avilés-Trigueros; María Paz Villegas-Pérez; Manuel Vidal-Sanz; Alberto Triviño; José M. Ramírez

BackgroundOcular hypertension is a major risk factor for glaucoma, a neurodegenerative disease characterized by an irreversible decrease in ganglion cells and their axons. Macroglial and microglial cells appear to play an important role in the pathogenic mechanisms of the disease. Here, we study the effects of laser-induced ocular hypertension (OHT) in the macroglia, microglia and retinal ganglion cells (RGCs) of eyes with OHT (OHT-eyes) and contralateral eyes two weeks after lasering.MethodsTwo groups of adult Swiss mice were used: age-matched control (naïve, n = 9); and lasered (n = 9). In the lasered animals, both OHT-eyes and contralateral eyes were analyzed. Retinal whole-mounts were immunostained with antibodies against glial fibrillary acid protein (GFAP), neurofilament of 200kD (NF-200), ionized calcium binding adaptor molecule (Iba-1) and major histocompatibility complex class II molecule (MHC-II). The GFAP-labeled retinal area (GFAP-RA), the intensity of GFAP immunoreaction (GFAP-IR), and the number of astrocytes and NF-200 + RGCs were quantified.ResultsIn comparison with naïve: i) astrocytes were more robust in contralateral eyes. In OHT-eyes, the astrocyte population was not homogeneous, given that astrocytes displaying only primary processes coexisted with astrocytes in which primary and secondary processes could be recognized, the former having less intense GFAP-IR (P < 0.001); ii) GFAP-RA was increased in contralateral (P <0.05) and decreased in OHT-eyes (P <0.001); iii) the mean intensity of GFAP-IR was higher in OHT-eyes (P < 0.01), and the percentage of the retinal area occupied by GFAP+ cells with higher intensity levels was increased in contralateral (P = 0.05) and in OHT-eyes (P < 0.01); iv) both in contralateral and in OHT-eyes, GFAP was upregulated in Müller cells and microglia was activated; v) MHC-II was upregulated on macroglia and microglia. In microglia, it was similarly expressed in contralateral and OHT-eyes. By contrast, in macroglia, MHC-II upregulation was observed mainly in astrocytes in contralateral eyes and in Müller cells in OHT-eyes; vi) NF-200+RGCs (degenerated cells) appeared in OHT-eyes with a trend for the GFAP-RA to decrease and for the NF-200+RGC number to increase from the center to the periphery (r = −0.45).ConclusionThe use of the contralateral eye as an internal control in experimental induction of unilateral IOP should be reconsidered. The gliotic behavior in contralateral eyes could be related to the immune response. The absence of NF-200+RGCs (sign of RGC degeneration) leads us to postulate that the MHC-II upregulation in contralateral eyes could favor neuroprotection.


Experimental Eye Research | 2010

Ocular hypertension impairs optic nerve axonal transport leading to progressive retinal ganglion cell degeneration.

Manuel Salinas-Navarro; Luis Alarcón-Martínez; Francisco J. Valiente-Soriano; Manuel Jiménez-López; Sergio Mayor-Torroglosa; Marcelino Avilés-Trigueros; María Paz Villegas-Pérez; Manuel Vidal-Sanz

Ocular hypertension (OHT) is the main risk factor of glaucoma, a neuropathy leading to blindness. Here we have investigated the effects of laser photocoagulation (LP)-induced OHT, on the survival and retrograde axonal transport (RAT) of adult rat retinal ganglion cells (RGC) from 1 to 12 wks. Active RAT was examined with fluorogold (FG) applied to both superior colliculi (SCi) 1 wk before processing and passive axonal diffusion with dextran tetramethylrhodamine (DTMR) applied to the optic nerve (ON) 2 d prior to sacrifice. Surviving RGCs were identified with FG applied 1 wk pre-LP or by Brn3a immunodetection. The ON and retinal nerve fiber layer were examined by RT97-neurofibrillar staining. RGCs were counted automatically and color-coded density maps were generated. OHT retinas showed absence of FG+ or DTMR+RGCs in focal, pie-shaped and diffuse regions of the retina which, by two weeks, amounted to, approximately, an 80% of RGC loss without further increase. At this time, there was a discrepancy between the total number of surviving FG-prelabelled RGCs and of DMTR+RGCs, suggesting that a large proportion of RGCs had their RAT impaired. This was further confirmed identifying surviving RGCs by their Brn3a expression. From 3 weeks onwards, there was a close correspondence of DTMR+RGCs and FG+RGCs in the same retinal regions, suggesting axonal constriction at the ON head. Neurofibrillar staining revealed, in ONs, focal degeneration of axonal bundles and, in the retinal areas lacking backlabeled RGCs, aberrant staining of RT97 characteristic of axotomy. LP-induced OHT results in a crush-like injury to ON axons leading to the anterograde and protracted retrograde degeneration of the intraocular axons and RGCs.


Vision Research | 2009

Retinal ganglion cell population in adult albino and pigmented mice: A computerized analysis of the entire population and its spatial distribution

Manuel Salinas-Navarro; Manuel Jiménez-López; Francisco J. Valiente-Soriano; Luis Alarcón-Martínez; Marcelino Avilés-Trigueros; S. Mayor; T.M. Holmes; Raymond D. Lund; M. P. Villegas-Pérez; Manuel Vidal-Sanz

UNLABELLED In adult Swiss albino and C57 pigmented mice, RGCs were identified with a retrogradely transported neuronal tracer applied to both optic nerves (ON) or superior colliculi (SCi). After histological processing, the retinas were prepared as whole-mounts, examined and photographed under a fluorescence microscope equipped with a motorized stage controlled by a commercial computer image analysis system: Image-Pro Plus((R)) (IPP). Retinas were imaged as a stack of 24-bit color images (140 frames per retina) using IPP with the Scope-Pro plug-in 5.0 and the images montaged to create a high-resolution composite of the retinal whole-mount when required. Single images were also processed by specific macros written in IPP that apply a sequence of filters and transformations in order to separate individual cells for automatic counting. Cell counts were later transferred to a spreadsheet for statistical analysis and used to generate a RGC density map for each retina. RESULTS The mean total numbers of RGCs labeled from the ON, in Swiss (49,493+/-3936; n=18) or C57 mice (42,658+/-1540; n=10) were slightly higher than the mean numbers of RGCs labeled from the SCi, in Swiss (48,733+/-3954; n=43) or C57 mice (41,192+/-2821; n=42), respectively. RGCs were distributed throughout the retina and density maps revealed a horizontal region in the superior retina near the optic disk with highest RGC densities. In conclusion, the population of mice RGCs may be counted automatically with a level of confidence comparable to manual counts. The distribution of RGCs adopts a form of regional specialization that resembles a horizontal visual streak.

Collaboration


Dive into the Manuel Vidal-Sanz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge