Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel Zeitelhofer is active.

Publication


Featured researches published by Manuel Zeitelhofer.


The Journal of Neuroscience | 2008

Dynamic Interaction between P-Bodies and Transport Ribonucleoprotein Particles in Dendrites of Mature Hippocampal Neurons

Manuel Zeitelhofer; Daniela Karra; Paolo Macchi; Marco Tolino; Sabine Thomas; Martina Schwarz; Michael A. Kiebler; Ralf Dahm

The dendritic localization of mRNAs and their subsequent translation at stimulated synapses contributes to the experience-dependent remodeling of synapses and thereby to the establishment of long-term memory. Localized mRNAs are transported in a translationally silent manner to distal dendrites in specific ribonucleoprotein particles (RNPs), termed transport RNPs. A recent study suggested that processing bodies (P-bodies), which have recently been identified as sites of RNA degradation and translational control in eukaryotic cells, may participate in the translational control of dendritically localized mRNAs in Drosophila neurons. This study raised the interesting question of whether dendritic transport RNPs are distinct from P-bodies or whether those structures share significant overlap in their molecular composition in mammalian neurons. Here, we show that P-body and transport RNP markers do not colocalize and are not transported together in the same particles in dendrites of mammalian neurons. Detailed time-lapse videomicroscopy analyses reveal, however, that both P-bodies and transport RNPs can interact in a dynamic manner via docking. Docking is a frequent event involving as much as 50% of all dendritic P-bodies. Chemically induced neuronal activity results in a 60% decrease in the number of P-bodies in dendrites, suggesting that P-bodies disassemble after synaptic stimulation. Our data lend support to the exciting hypothesis that dendritically localized mRNAs might be stored in P-bodies and be released and possibly translated when synapses become activated.


Nature Protocols | 2007

High-efficiency transfection of mammalian neurons via nucleofection

Manuel Zeitelhofer; John P. Vessey; Yunli Xie; Fabian Tübing; Sabine Thomas; Michael A. Kiebler; Ralf Dahm

Transfection of foreign DNA is widely used to study gene function. However, despite the development of numerous methods, the transfer of DNA into postmitotic cells, such as neurons, remains unsatisfactory with regard to either transfection efficiency or cytotoxicity. Nucleofection overcomes these limitations. Direct electroporation of expression plasmids or oligonucleotides into the nucleus ensures both good cell viability and consistently high transfection rates. This allows biochemical analyses of transfected neurons, for example, western blot analyses of protein levels after RNA interference (RNAi) knockdown or microRNA transfection. We provide comprehensive protocols for performing nucleofection with high efficiency on primary neurons. The focus is on the recently developed 96-well shuttle system, which allows the simultaneous testing of up to 96 different plasmids or experimental conditions. Using this system, reproducible high-throughput expression of various transgenes is now feasible on primary neurons, for example large-scale RNAi analyses to downregulate gene expression. The protocol typically takes between 2 and 3 h.


American Journal of Pathology | 2008

After Injection into the Striatum, in Vitro-Differentiated Microglia- and Bone Marrow-Derived Dendritic Cells Can Leave the Central Nervous System via the Blood Stream

Sonja Hochmeister; Manuel Zeitelhofer; Jan Bauer; Eva-Maria Nicolussi; Marie-Therese Fischer; Bernhard Heinke; Edgar Selzer; Hans Lassmann; Monika Bradl

The prototypic migratory trail of tissue-resident dendritic cells (DCs) is via lymphatic drainage. Since the central nervous system (CNS) lacks classical lymphatic vessels, and antigens and cells injected into both the CNS and cerebrospinal fluid have been found in deep cervical lymph nodes, it was thought that CNS-derived DCs exclusively used the cerebrospinal fluid pathway to exit from tissues. It has become evident, however, that DCs found in peripheral organs can also leave tissues via the blood stream. To study whether DCs derived from microglia and bone marrow can also use this route of emigration from the CNS, we performed a series of experiments in which we injected genetically labeled DCs into the striata of rats. We show here that these cells migrated from the injection site to the perivascular space, integrated into the endothelial lining of the CNS vasculature, and were then present in the lumen of CNS blood vessels days after the injection. Moreover, we also found these cells in both mesenteric lymph nodes and spleens. Hence, microglia- and bone marrow-derived DCs can leave the CNS via the blood stream.


PLOS ONE | 2013

Imatinib Ameliorates Neuroinflammation in a Rat Model of Multiple Sclerosis by Enhancing Blood-Brain Barrier Integrity and by Modulating the Peripheral Immune Response

Milena Z. Adzemovic; Manuel Zeitelhofer; Ulf Eriksson; Tomas Olsson; Ingrid Nilsson

Central nervous system (CNS) disorders such as ischemic stroke, multiple sclerosis (MS) or Alzheimeŕs disease are characterized by the loss of blood-brain barrier (BBB) integrity. Here we demonstrate that the small tyrosine kinase inhibitor imatinib enhances BBB integrity in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis (MS). Treatment was accompanied by decreased CNS inflammation and demyelination and especially reduced T-cell recruitment. This was supported by downregulation of the chemokine receptor (CCR) 2 in CNS and lymph nodes, and by modulation of the peripheral immune response towards an anti-inflammatory phenotype. Interestingly, imatinib ameliorated neuroinflammation, even when the treatment was initiated after the clinical manifestation of the disease. We have previously shown that imatinib reduces BBB disruption and stroke volume after experimentally induced ischemic stroke by targeting platelet-derived growth factor receptor -α (PDGFR-α) signaling. Here we demonstrate that PDGFR-α signaling is a central regulator of BBB integrity during neuroinflammation and therefore imatinib should be considered as a potentially effective treatment for MS.


Experimental Neurology | 2013

Efficacy of vitamin D in treating multiple sclerosis-like neuroinflammation depends on developmental stage

Milena Z. Adzemovic; Manuel Zeitelhofer; Sonja Hochmeister; Sven A. Gustafsson; Maja Jagodic

The association of vitamin D deficiency with higher prevalence, relapse rate and progression of multiple sclerosis (MS) has stimulated great interest in using vitamin D supplementation as a preventative measure and even a therapy for established MS. However, there is a considerable lack of evidence when it comes to an age/developmental stage-dependent efficacy of vitamin D action and a time-window for the most effective prophylactic treatment remains unclear. We studied the effect of vitamin D supplementation in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), an animal model of MS, at three different developmental stages in rats. Supplementation treatment was initiated: i) prior to gestation and maintained throughout pre- and early postnatal development (gestation and lactation); ii) after weaning, throughout juvenile/adolescence period and iii) in adult age. We observed a marked attenuation of EAE in juvenile/adolescent rats reflected in a less severe CNS inflammation and demyelination, accompanied by a lower amount of IFN-γ producing MOG-specific T cells. Moreover, the cytokine expression pattern in these rats reflected a more anti-inflammatory phenotype of their peripheral immune response. However, the same supplementation regimen failed to improve the disease outcome both in adult rats and in rats treated during pre- and early post-natal development. Our data demonstrate a developmental stage-dependent efficiency of vitamin D to ameliorate neuroinflammation, suggesting that childhood and adolescence should be the target for the most effective preventive treatment.


PLOS ONE | 2012

Expression of Ccl11 Associates with Immune Response Modulation and Protection against Neuroinflammation in Rats

Milena Z. Adzemovic; Johan Öckinger; Manuel Zeitelhofer; Sonja Hochmeister; Amennai Daniel Beyeen; Atul Paulson; Alan Gillett; Melanie Thessen Hedreul; Ruxandra Covacu; Hans Lassmann; Tomas Olsson; Maja Jagodic

Multiple sclerosis (MS) is a polygenic disease characterized by inflammation and demyelination in the central nervous system (CNS), which can be modeled in experimental autoimmune encephalomyelitis (EAE). The Eae18b locus on rat chromosome 10 has previously been linked to regulation of beta-chemokine expression and severity of EAE. Moreover, the homologous chemokine cluster in humans showed evidence of association with susceptibility to MS. We here established a congenic rat strain with Eae18b locus containing a chemokine cluster (Ccl2, Ccl7, Ccl11, Ccl12 and Ccl1) from the EAE- resistant PVG rat strain on the susceptible DA background and utilized myelin oligodendrocyte glycoprotein (MOG)-induced EAE to characterize the mechanisms underlying the genetic regulation. Congenic rats developed a milder disease compared to the susceptible DA strain, and this was reflected in decreased demyelination and in reduced recruitment of inflammatory cells to the brain. The congenic strain also showed significantly increased Ccl11 mRNA expression in draining lymph nodes and spinal cord after EAE induction. In the lymph nodes, macrophages were the main producers of CCL11, whereas macrophages and lymphocytes expressed the main CCL11 receptor, namely CCR3. Accordingly, the congenic strain also showed significantly increased Ccr3 mRNA expression in lymph nodes. In the CNS, the main producers of CCL11 were neurons, whereas CCR3 was detected on neurons and CSF producing ependymal cells. This corresponded to increased levels of CCL11 protein in the cerebrospinal fluid of the congenic rats. Increased intrathecal production of CCL11 in congenic rats was accompanied by a tighter blood brain barrier, reflected by more occludin+ blood vessels. In addition, the congenic strain showed a reduced antigen specific response and a predominant anti-inflammatory Th2 phenotype. These results indicate novel mechanisms in the genetic regulation of neuroinflammation.


RNA Biology | 2008

Perplexing bodies: The putative roles of P-bodies in neurons.

Manuel Zeitelhofer; Paolo Macchi; Ralf Dahm

Processing bodies (P-bodies) have recently come to the fore as important cellular sites of mRNA degradation and translational silencing. Despite these central functions in the control of gene expression, the roles of P-bodies have only been characterized in a limited number of cell types and physiological contexts. Neurons are highly plastic cells that undergo dynamic changes as new connections are made or existing ones modified. This neuronal plasticity relies, in part, on the local synthesis of proteins from localized mRNAs. A strict control of the translation and turnover of these localized mRNAs, both in terms of which proteins are synthesized and when and where they are produced, is a key prerequisite for this process to be synapse-specific. Despite recent advances, the molecular mechanisms mediating this control remain largely elusive. The discovery of P-bodies in neuronal dendrites near synapses and their response to stimuli involved in neuronal plasticity raises the interesting hypothesis that P-bodies might be a component of the cellular machinery that controls neuronal plasticity and thereby processes such as learning and memory.


Journal of the National Cancer Institute | 2015

Role of Tumor Pericytes in the Recruitment of Myeloid-Derived Suppressor Cells

JongWook Hong; Nicholas P. Tobin; Helene Rundqvist; Tian Li; Marion Lavergne; Yaiza García-Ibáñez; Hanyu Qin; Janna Paulsson; Manuel Zeitelhofer; Milena Z. Adzemovic; Ingrid Nilsson; Pernilla Roswall; Johan Hartman; Randall S. Johnson; Arne Östman; Jonas Bergh; Mirjana Poljakovic; Guillem Genové

BACKGROUND Pericytes are members of the tumor stroma; however, little is known about their origin, function, or interaction with other tumor components. Emerging evidence suggest that pericytes may regulate leukocyte transmigration. Myeloid-derived suppressor cells (MDSC) are immature myeloid cells with powerful inhibitory effects on T-cell-mediated antitumor reactivity. METHODS We generated subcutaneous tumors in a genetic mouse model of pericyte deficiency (the pdgfb (ret/ret) mouse) and littermate control mice (n = 6-25). Gene expression profiles from 253 breast cancer patients (stage I-III) were evaluated for clinic-pathological parameters and survival using Cox proportional hazard ratios (HRs) and 95% confidence intervals (CIs) based on a two-sided Wald test. RESULTS We report that pericyte deficiency leads to increased transmigration of Gr1(+)/CD11b(+) cells in experimentally induced tumors. Pericyte deficiency produced defective tumor vasculature, resulting in a more hypoxic microenvironment promoting IL-6 upregulation in the malignant cells. Silencing IL-6 expression in tumor cells attenuated the observed differences in MDSC transmigration. Restoring the pericyte coverage in tumors abrogated the increased MDSC trafficking to pericyte-deficient tumors. MDSC accumulation in tumors led to increases in tumor growth and in circulating malignant cells. Finally, gene expression analysis from human breast cancer patients revealed increased expression of the human MDSC markers CD33 and S100A9 with concomitant decreased expression of pericyte genes and was associated with poor prognosis (HR = 1.88, 95% CI = 1.08 to 3.25, P = .03). CONCLUSIONS Our data uncovers a novel paracrine interaction between tumor pericytes and inflammatory cells and delineates the cellular events resulting in the recruitment of MDSC to tumors. Furthermore, we propose for the first time a role for tumor pericytes in modulating the expression of immune mediators in malignant cells by promoting a hypoxic microenvironment.


Methods in Cell Biology | 2008

Visualizing mRNA Localization and Local Protein Translation in Neurons

Ralf Dahm; Manuel Zeitelhofer; Bernhard Götze; Michael A. Kiebler; Paolo Macchi

Fluorescent proteins (FPs) have been successfully used to study the localization and interactions of proteins in living cells. They have also been instrumental in analyzing the proteins involved in the localization of RNAs in different cell types, including neurons. With the development of methods that also tag RNAs via fluorescent proteins, researchers now have a powerful tool to covisualize RNAs and associated proteins in living neurons. Here, we review the current status of the use of FPs in the study of transport and localization of ribonucleoprotein particles (RNPs) in neurons and provide key protocols used to introduce transgenes into cultured neurons, including calcium-phosphate-based transfection and nucleofection. These methods allow the fast and efficient expression of fluorescently tagged fusion proteins in neurons at different stages of differentiation and form the basis for fluorescent protein-based live cell imaging in neuronal cultures. Additional protocols are given that allow the simultaneous visualization of RNP proteins and cargo RNAs in living neurons and aspects of the visualization of fluorescently tagged proteins in neurons, such as colocalization studies, are discussed. Finally, we review approaches to visualize the local synthesis of proteins in distal dendrites and axons.


Epigenetics | 2012

Human cytomegalovirus infection is sensitive to the host cell DNA methylation state and alters global DNA methylation capacity

Atosa Estekizadeh; Mohsen Karimi; Klas Strååt; Ole Ammerpohl; Manuel Zeitelhofer; Maja Jagodic; Marjan Mehrab-Mohseni; Louise K. Sjöholm; Afsar Rahbar; Cecilia Söderberg-Nauclér; Tomas J. Ekström

Human Cytomegalovirus (HCMV) is a ubiquitous herpesvirus that infects and establishes latency in the majority of the human population and may cause fatal infections in immunocompromised patients. Recent data implies a close interaction between HCMV encoded proteins and cellular epigenetic mechanisms such as histone acetylation and deacetylation. In this study, we investigated the interactions between HCMV infection and the DNA methylation machinery in different host cells using several approaches. We found that colon cancer cell line HCT-116 lacking the DNMT1 and DNMT3b methyltransferases was susceptible to HCMV-AD169 infection, while wild-type cells were non-susceptible. Treatment of wild-type HCT-116 cells with 5-azacytidine rendered them susceptible to infection. Further investigation of HCMV infected MRC-5 fibroblasts demonstrated significant global hypomethylation, a phenomenon that was virus strain-specific and associated with the re-localization of DNMT1 and DNMT3b from the nucleus to the cytoplasm. The cytoplasmic accumulation of DNMT1 was also evident in in vitro infected macrophages and in epithelial cells in tissue samples from patients with inflammatory bowel disease and concomitant HCMV infection. Foscavir treatment of virus infected fibroblasts did not affect the majority of the virus induced nuclear exclusion of DNMT1, which suggest that it is dependent on viral IE gene products. In conclusion, HCMV infection results in profound effects on the host cell DNA methylation machinery and is associated with inflammation in vivo. Our results improve the understanding of cytomegalovirus pathogenesis and open the search for new antiviral therapy targets. These findings may also contribute to the further understanding of mechanisms involved in DNA methylation abnormalities in physiological and pathological conditions.

Collaboration


Dive into the Manuel Zeitelhofer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonja Hochmeister

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabine Thomas

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Lassmann

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge