Manuela Garnica
IMDEA
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manuela Garnica.
Chemical Communications | 2010
Sara Barja; Manuela Garnica; J. J. Hinarejos; Amadeo L. Vázquez de Parga; Nazario Martín; R. Miranda
Graphene grown on Ir(111) electronically decouples adsorbed molecules from the metallic substrate and allows the study of their self-organization on surfaces. We study two electron acceptor molecules from the same family. The intermolecular interaction, attractive for TCNQ and repulsive for F(4)-TCNQ, dictates the molecular ordering.
Physical Review Letters | 2010
Sara Barja; Manuela Garnica; Daniel Sánchez-Portal; V. M. Silkin; E. V. Chulkov; C. F. Hermanns; J. J. Hinarejos; A.L. Vázquez de Parga; A. Arnau; P. M. Echenique; R. Miranda
We explore the spatial variations of the unoccupied electronic states of graphene epitaxially grown on Ru(0001) and observed three unexpected features: the first graphene image state is split in energy; unlike all other image states, the split state does not follow the local work function modulation, and a new interfacial state at +3 eV appears on some areas of the surface. First-principles calculations explain the observations and permit us to conclude that the system behaves as a self-organized periodic array of quantum dots.
Nature Chemistry | 2016
Yuanqin He; Manuela Garnica; Felix Bischoff; Jacob Ducke; Marie-Laure Bocquet; Matthias Batzill; Willi Auwärter; Johannes V. Barth
Surface-assisted covalent linking of precursor molecules enables the fabrication of low-dimensional nanostructures, which include graphene nanoribbons. One approach to building functional multicomponent systems involves the lateral anchoring of organic heteromolecules to graphene. Here we demonstrate the dehydrogenative coupling of single porphines to graphene edges on the same metal substrate as used for graphene synthesis. The covalent linkages are visualized by scanning probe techniques with submolecular resolution, which directly reveals bonding motifs and electronic features. Distinct configurations are identified that can be steered towards entities predominantly fused to graphene edges through two pyrrole rings by thermal annealing. Furthermore, we succeeded in the concomitant metallation of the macrocycle with substrate atoms and the axial ligation of adducts. Such processes combined with graphene-nanostructure synthesis has the potential to create complex materials systems with tunable functionalities.
Nano Letters | 2014
Manuela Garnica; Daniele Stradi; Fabián Calleja; Sara Barja; Cristina Díaz; Manuel Alcamí; A. Arnau; Amadeo L. Vázquez de Parga; Fernando Martín; R. Miranda
TCNQ molecules are used as a sensitive probe for the Kondo response of the electron gas of a nanostructured graphene grown on Ru(0001) presenting a moiré pattern. All adsorbed molecules acquired an extra electron by charge transfer from the substrate, but only those adsorbed in the FCC-Top areas of the moiré show magnetic moment and Kondo resonance in the STS spectra. DFT calculations trace back this behavior to the existence of a surface resonance in the low areas of the graphene moiré, whose density distribution strongly depends on the stacking sequence of the moiré area and effectively quenches the magnetic moment for HCP-Top sites.
Nano Letters | 2016
Sofía Leret; Fabián Calleja; Daniele Stradi; Andrés Black; Ramón Bernardo-Gavito; Manuela Garnica; Daniel Granados; Amadeo L. Vázquez de Parga; Emilio M. Pérez; R. Miranda
Organic covalent functionalization of graphene with long-range periodicity is highly desirable-it is anticipated to provide control over its electronic, optical, or magnetic properties-and remarkably challenging. In this work we describe a method for the covalent modification of graphene with strict spatial periodicity at the nanometer scale. The periodic landscape is provided by a single monolayer of graphene grown on Ru(0001) that presents a moiré pattern due to the mismatch between the carbon and ruthenium hexagonal lattices. The moiré contains periodically arranged areas where the graphene-ruthenium interaction is enhanced and shows higher chemical reactivity. This phenomenon is demonstrated by the attachment of cyanomethyl radicals (CH2CN(•)) produced by homolytic breaking of acetonitrile (CH3CN), which is shown to present a nearly complete selectivity (>98%) binding covalently to graphene on specific atomic sites. This method can be extended to other organic nitriles, paving the way for the attachment of functional molecules.
Journal of the American Chemical Society | 2015
José I. Urgel; Martin Schwarz; Manuela Garnica; Daphné Stassen; Davide Bonifazi; David Ecija; Johannes V. Barth; Willi Auwärter
We report the formation of a metal-organic network on a BN/Cu(111) template by codeposition of carbonitrile-functionalized porphyrin derivatives (2H-TPCN) with Co atoms in an ultrahigh vacuum environment. The resulting metallo-supramolecular structure explored by scanning tunneling microscopy and spectroscopy features a distinct 4-fold coordination motif. Furthermore, we demonstrate an in situ metalation of the tetrapyrrole macrocycles with deposited Co atoms yielding Co-TPCN directly on the BN sheet. Our results provide perspectives for the formation of coordination networks on BN and related systems featuring structural, electronic, and magnetic properties unachievable on metallic supports.
Semiconductor Science and Technology | 2010
Sara Barja; Manuela Garnica; J. J. Hinarejos; A.L. Vázquez de Parga; R. Miranda; F. Guinea
We report here on a method of fabricating and characterizing highly perfect, periodically rippled graphene monolayers and islands, epitaxially grown on single crystal metallic substrates under controlled ultra-high vacuum conditions. The periodicity of the ripples is dictated by the difference in lattice parameters of graphene and substrate, and, thus, it is adjustable. We characterize its perfection at the atomic scale by means of STM and determine its electronic structure in the real space by local tunnelling spectroscopy. There are periodic variations in the geometric and electronic structure of the graphene monolayer. We observe inhomogeneities in the charge distribution, i.e. a larger occupied density of states at the higher parts of the ripples. Periodically rippled graphene might represent the physical realization of an ordered array of coupled graphene quantum dots. The data show, however, that for rippled graphene on Ru(0 0 0 1) both the low and the high parts of the ripples are metallic. The fabrication of periodically rippled graphene layers with controllable characteristic length and different bonding interactions with the substrate will allow a systematic experimental test of this fundamental problem.
Nature Communications | 2017
Xiao-Ye Wang; Marcus Richter; Yuanqin He; Jonas Björk; Alexander Riss; Raju Rajesh; Manuela Garnica; Felix Hennersdorf; Jan J. Weigand; Akimitsu Narita; Reinhard Berger; Xinliang Feng; Willi Auwärter; Johannes V. Barth; Carlos-Andres Palma; Klaus Müllen
Nanographenes, namely polycyclic aromatic hydrocarbons (PAHs) with nanoscale dimensions (>1 nm), are atomically precise cutouts from graphene. They represent prime models to enhance the scope of chemical and physical properties of graphene through structural modulation and functionalization. Defined nitrogen doping in nanographenes is particularly attractive due to its potential for increasing the number of π-electrons, with the possibility of introducing localized antiaromatic ring elements. Herein we present azomethine ylide homocoupling as a strategy to afford internally nitrogen-doped, non-planar PAH in solution and planar nanographene on surfaces, with central pyrazine rings. Localized antiaromaticity of the central ring is indicated by optical absorption spectroscopy in conjunction with theoretical calculations. Our strategy opens up methods for chemically tailoring graphene and nanographenes, modified by antiaromatic dopants.Polyaromatic hydrocarbons can be precisely manipulated to yield ever more complex and discrete graphene analogs, such as nanographenes. Here, the authors use azomethine ylide homocoupling to insert an antiaromatic pyrazine ring into the core of a nanographene, and characterize the molecule’s unique electronic character.
Applied Physics Letters | 2013
Andres Castellanos-Gomez; Gabino Rubio-Bollinger; Sara Barja; Manuela Garnica; Amadeo L. Vázquez de Parga; R. Miranda; Nicolás Agraït
We have performed low temperature scanning tunnelling spectroscopy measurements on graphene epitaxially grown on Ru(0001). An inelastic feature, related to the excitation of a vibrational breathing mode of the graphene lattice, was found at 360 meV. The change in the differential electrical conductance produced by this inelastic feature, which is associated with the electron-phonon interaction strength, varies spatially from one position to other of the graphene supercell. This inhomogeneity in the electronic properties of graphene on Ru(0001) results from local variations of the carbon–ruthenium interaction due to the lattice mismatch between the graphene and the Ru(0001) lattices.
Ultramicroscopy | 2012
Andres Castellanos-Gomez; Gabino Rubio-Bollinger; Manuela Garnica; Sara Barja; Amadeo L. Vázquez de Parga; R. Miranda; Nicolás Agraït
An in situ tip preparation procedure compatible with ultra-low temperature and high magnetic field scanning tunneling microscopes is presented. This procedure does not require additional preparation techniques such as thermal annealing or ion milling. It relies on the local electric-field-induced deposition of material from the tip onto the studied surface. Subsequently, repeated indentations are performed onto the sputtered cluster to mechanically anneal the tip apex and thus to ensure the stability of the tip. The efficiency of this method is confirmed by comparing the topography and spectroscopy data acquired with either unprepared or in situ prepared tips on epitaxial graphene grown on Ru (0001). We demonstrate that the use of in situ prepared tips increases the stability of the scanning tunneling images and the reproducibility of the spectroscopic measurements.