Manuela Silginer
University of Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manuela Silginer.
Journal of Neurochemistry | 2012
Caroline Happold; Patrick Roth; Wolfgang Wick; Natalie Schmidt; Ana-Maria Florea; Manuela Silginer; Guido Reifenberger; Michael Weller
J. Neurochem. (2012) 122, 444–455.
Brain | 2013
Patrick Roth; Manuela Silginer; Simon Goodman; Kathy Hasenbach; Svenja Thies; Gabriele Maurer; Peter Schraml; Ghazaleh Tabatabai; Holger Moch; Isabel Tritschler; Michael Weller
Transforming growth factor-β is a central mediator of the malignant phenotype of glioblastoma, the most common and malignant form of intrinsic brain tumours. Transforming growth factor-β promotes invasiveness and angiogenesis, maintains cancer cell stemness and induces profound immunosuppression in the host. Integrins regulate cellular adhesion and transmit signals important for cell survival, proliferation, differentiation and motility, and may be involved in the activation of transforming growth factor-β. We report that αvβ3, αvβ5 and αvβ8 integrins are broadly expressed not only in glioblastoma blood vessels but also in tumour cells. Exposure to αv, β3 or β5 neutralizing antibodies, RNA interference-mediated integrin gene silencing or pharmacological integrin inhibition using the cyclic RGD peptide EMD 121974 (cilengitide) results in reduced phosphorylation of Smad2 in most glioma cell lines, including glioma-initiating cell lines and reduced transforming growth factor-β-mediated reporter gene activity, coinciding with reduced transforming growth factor-β protein levels in the supernatant. Time course experiments indicated that the loss of transforming growth factor-β bioactivity due to integrin inhibition likely results from two distinct mechanisms: an early effect on activation of preformed inactive protein, and second, major effect on transforming growth factor-β gene transcription as confirmed by decreased activity of the transforming growth factor-β gene promoter and decreased transforming growth factor-β(1) and transforming growth factor-β(2) messenger RNA expression levels. In vivo, EMD 121974 (cilengitide), which is currently in late clinical development as an antiangiogenic agent in newly diagnosed glioblastoma, was a weak antagonist of pSmad2 phosphorylation. These results validate integrin inhibition as a promising strategy not only to inhibit angiogenesis, but also to block transforming growth factor-β-controlled features of malignancy including invasiveness, stemness and immunosuppression in human glioblastoma.
Cell Death and Disease | 2014
Manuela Silginer; Michael Weller; Urs Ziegler; Patrick Roth
Integrins regulate cellular adhesion and transmit signals important for cell survival, proliferation and motility. They are expressed by glioma cells and may contribute to their malignant phenotype. Integrin inhibition may therefore represent a promising therapeutic strategy. GL-261 and SMA-560 glioma cells grown under standard conditions uniformly detached and formed large cell clusters after integrin gene silencing or pharmacological inhibition using EMD-121974, a synthetic Arg-Gly-Asp-motif peptide, or GLPG0187, a nonpeptidic integrin inhibitor. After 120 h, the clusters induced by integrin inhibition decayed and cells died. In contrast, when cells were cultured under stem cell (sphere) conditions, no disaggregation became apparent upon integrin inhibition, and cell death was not observed. As poly-HEMA-mediated detachment had similar effects on cell viability as integrin inhibition, we postulated that cell death may result from detachment alone, which was confirmed using various permissive and nonpermissive substrates. No surrogate markers of apoptosis were detected and electron microscopy confirmed that necrosis represents the dominant morphology of detachment-induced cell death. In addition, integrin inhibition resulted in the induction of autophagy that represents a survival signal. When integrins were inhibited in nonsphere glioma cells, the TGF-β pathway was strongly impaired, whereas no such effect was observed in glioma cells cultured under sphere conditions. Cell death induced by integrin inhibition was rescued by the addition of recombinant transforming growth factor-β (TGF-β) and accelerated by exposure to the TGF-β receptor inhibitor, SD-208. In summary, cell death following integrin inhibition is detachment mediated, represents an atypical form of anoikis involving necrosis as well as autophagy, and is modulated by TGF-β pathway activity.
Molecular Cancer Therapeutics | 2014
Caroline Happold; Patrick Roth; Manuela Silginer; Ana-Maria Florea; Katrin Lamszus; Karl Frei; René Deenen; Guido Reifenberger; Michael Weller
Glioblastoma is the most common malignant brain tumor in adults and characterized by a poor prognosis. Glioma cells expressing O6-methylguanine DNA methyltransferase (MGMT) exhibit a higher level of resistance toward alkylating agents, including the standard of care chemotherapeutic agent temozolomide. Here, we demonstrate that long-term glioma cell lines (LTL) as well as glioma-initiating cell lines (GIC) express receptors for the immune modulatory cytokine IFN-β and respond to IFN-β with induction of STAT-3 phosphorylation. Exposure to IFN-β induces a minor loss of viability, but strongly interferes with sphere formation in GIC cultures. Furthermore, IFN-β sensitizes LTL and GIC to temozolomide and irradiation. RNA interference confirmed that both IFN-β receptors, R1 and R2, are required for IFN-β–mediated sensitization, but that sensitization is independent of MGMT or TP53. Most GIC lines are highly temozolomide-resistant, mediated by MGMT expression, but nevertheless susceptible to IFN-β sensitization. Gene expression profiling following IFN-β treatment revealed strong upregulation of IFN-β–associated genes, including a proapoptotic gene cluster, but did not alter stemness-associated expression signatures. Caspase activity and inhibition studies revealed the proapoptotic genes to mediate glioma cell sensitization to exogenous death ligands by IFN-β, but not to temozolomide or irradiation, indicating distinct pathways of death sensitization mediated by IFN-β. Thus, IFN-β is a potential adjunct to glioblastoma treatment that may target the GIC population. IFN-β operates independently of MGMT-mediated resistance, classical apoptosis-regulatory networks, and stemness-associated gene clusters. Mol Cancer Ther; 13(4); 948–61. ©2014 AACR.
Cell Death and Disease | 2017
Manuela Silginer; Michael Weller; Roger Stupp; Patrick Roth
Glioblastoma is the most common and aggressive form of intrinsic brain tumor with a very poor prognosis. Thus, novel therapeutic approaches are urgently needed. Tumor-treating fields (TTFields) may represent such a novel treatment option. The aim of this study was to investigate the effects of TTFields on glioma cells, as well as the functional characterization of the underlying mechanisms. Here, we assessed the anti-glioma activity of TTFields in several preclinical models. Applying TTFields resulted in the induction of cell death in a frequency- and intensity-dependent manner in long-term glioma cell lines, as well as glioma-initiating cells. Cell death occurred in the absence of caspase activation, but involved autophagy and necroptosis. Severe alterations in cell cycle progression and aberrant mitotic features, such as poly- and micronucleation, preceded the induction of cell death. Furthermore, exposure to TTFields led to reduced migration and invasion, which are both biological hallmarks of glioma cells. The combination of TTFields with irradiation or the alkylating agent, temozolomide (TMZ), resulted in additive or synergistic effects, and the O6-methyl-guanine DNA methyltransferase status did not influence the efficacy of TTFields. Importantly, TMZ-resistant glioma cells were responsive to TTFields application, highlighting the clinical potential of this therapeutic approach. In summary, our results indicate that TTFields induce autophagy, as well as necroptosis and hamper the migration and invasiveness of glioma cells. These findings may allow for a more detailed clinical evaluation of TTFields beyond the clinical data available so far.
Oncotarget | 2016
Paula Codo; Michael Weller; Kerstin Kaulich; Daniel Schraivogel; Manuela Silginer; Guido Reifenberger; Gunter Meister; Patrick Roth
Growth and differentiation factor (GDF)-15 is a member of the transforming growth factor (TGF)-β family of proteins. GDF-15 levels are increased in the blood and cerebrospinal fluid of glioblastoma patients. Using a TCGA database interrogation, we demonstrate that high GDF-15 expression levels are associated with poor survival of glioblastoma patients. To elucidate the role of GDF-15 in glioblastoma in detail, we confirmed that glioma cells express GDF-15 mRNA and protein in vitro. To allow for a detailed functional characterization, GDF-15 expression was silenced using RNA interference in LNT-229 and LN-308 glioma cells. Depletion of GDF-15 had no effect on cell viability. In contrast, GDF-15-deficient cells displayed reduced migration and invasion, in the absence of changes in Smad2 or Smad1/5/8 phosphorylation. Conversely, exogenous GDF-15 stimulated migration and invasiveness. Large-scale expression profiling revealed that GDF-15 gene silencing resulted in minor changes in the miRNA profile whereas several genes, including members of the plasminogen activator/inhibitor complex, were deregulated at the mRNA level. One of the newly identified genes induced by GDF-15 gene silencing was the serpin peptidase inhibitor, clade E nexin group 1 (serpine1) which is induced by TGF-β and known to inhibit migration and invasiveness. However, serpine1 down-regulation alone did not mediate GDF-15-induced promotion of migration and invasiveness. Our findings highlight the complex contributions of GDF-15 to the invasive phenotype of glioma cells and suggest anti-GDF-15 approaches as a promising therapeutic strategy.
Acta Neuropathologica | 2018
Marian Christoph Neidert; Daniel J. Kowalewski; Manuela Silginer; Konstantina Kapolou; Linus Backert; Lena Katharina Freudenmann; Janet Kerstin Peper; Ana Marcu; Sophie Shih-Yüng Wang; Juliane Sarah Walz; Fabian Wolpert; Hans-Georg Rammensee; Reinhard Henschler; Katrin Lamszus; Manfred Westphal; Patrick Roth; Luca Regli; Stefan Stevanovic; Michael Weller; Günter Eisele
Glioblastoma is the most frequent malignant primary brain tumor. In a hierarchical tumor model, glioblastoma stem-like cells (GSC) play a major role in tumor initiation and maintenance as well as in therapy resistance and recurrence. Thus, targeting this cellular subset may be key to effective immunotherapy. Here, we present a mass spectrometry-based analysis of HLA-presented peptidomes of GSC and glioblastoma patient specimens. Based on the analysis of patient samples (n = 9) and GSC (n = 3), we performed comparative HLA peptidome profiling against a dataset of normal human tissues. Using this immunopeptidome-centric approach we could clearly delineate a subset of naturally presented, GSC-associated HLA ligands, which might serve as highly specific targets for T cell-based immunotherapy. In total, we identified 17 antigens represented by 41 different HLA ligands showing natural and exclusive presentation both on GSC and patient samples. Importantly, in vitro immunogenicity and antigen-specific target cell killing assays suggest these peptides to be epitopes of functional CD8+ T cell responses, thus rendering them prime candidates for antigen-specific immunotherapy of glioblastoma.
Journal of Neurochemistry | 2018
Caroline Happold; Nina Stojcheva; Manuela Silginer; Tobias Weiss; Patrick Roth; Guido Reifenberger; Michael Weller
O6‐methylguanine DNA methyltransferase (MGMT) promoter methylation is a predictive biomarker for benefit from alkylating chemotherapy, specifically temozolomide (TMZ), in glioblastoma, the most common malignant intrinsic brain tumor. Glioma‐initiating cells (GIC) with stem‐like properties have been associated with resistance to therapy and progression. We assessed the levels of MGMT mRNA and MGMT protein by real‐time PCR and immunoblot and evaluated the impact of MGMT on TMZ sensitivity in clonogenicity assays in GIC sphere cultures (S) or differentiated adherent monolayer cultures (M). Nuclear factor kappa B (NF‐κB) signaling was assessed by reporter assay and immunoblot. Compared to M cells, S cells expressed higher levels of MGMT. Differentiation of GIC induced by S‐to‐M transition resulted in a gradual loss of MGMT expression and increased TMZ sensitivity. This transcriptional regulation of MGMT was restricted to cell lines without MGMT promoter methylation and was not coupled to any specific neurobasal (NB) stem cell medium supplement or loss of cell adhesion. Expression levels of p50/p65 subunits of NF‐κB, a transcriptional regulator of MGMT, were increased in S cells. Inhibition of NF‐κB by the small molecule inhibitor, BAY 11‐7082, or siRNA‐mediated gene silencing, reduced MGMT levels. In summary, alkylator resistance of S cells is mainly promoted by over‐expression of MGMT which results from increased activity of the NF‐κB pathway in this cell culture model of glioma stem‐like cells.
Neuro-oncology | 2017
Manuela Silginer; Sara Nagy; Caroline Happold; Hannah Schneider; Michael Weller; Patrick Roth
Background Interferons (IFNs) are cytokines typically induced upon viral infection but are constitutively expressed also in the absence of acute infection. The physiological role of autocrine and paracrine IFN signaling, however, remains poorly understood, and its function in glioblastoma has not been explored in depth. Methods Using RNA interference-mediated gene silencing, we characterized constitutive type I IFN signaling and its role in human glioma cells. Results We observed constitutive expression of phosphorylated signal transducer and activator of transcription 1 (pSTAT1) and myxovirus resistance protein A (MxA), a classical IFN-response marker, in the absence of exogenous IFN-β. In vivo, we found higher MxA expression in gliomas than in normal tissue, suggesting that IFN signaling is constitutively active in these tumors. To demonstrate the presence of an autocrine type I IFN signaling loop in glioma cells in vitro, we first confirmed the expression of the type I alpha/beta receptor (IFNAR)1/2, and its ligands, IFN-α and IFN-β. Small interfering RNA-mediated receptor gene silencing resulted in reduced expression of MxA at mRNA and protein levels, as did gene silencing of the ligands, corroborating the hypothesis of an autocrine signaling loop in which type I IFNs induce intracellular signaling through IFNAR1/2. On a functional level, following IFNAR1 or IFNAR2 gene silencing, we observed reduced programmed death ligand 1 (PD-L1) and major histocompatibility complex (MHC) class I and II expression as well as an enhanced susceptibility to natural killer immune cell lysis, suggesting that autocrine IFN signaling contributes to the immune evasion of glioma cells. Conclusions Our findings point to an important role of constitutive IFN signaling in glioma cells by modulating their interaction with the microenvironment.
Clinical Cancer Research | 2017
Tobias Weiss; Hannah Schneider; Manuela Silginer; Alexander Steinle; Martin Pruschy; Bojan Polić; Michael Weller; Patrick Roth
Purpose: NKG2D is a potent activating immune cell receptor, and glioma cells express the cognate ligands (NKG2DL). These ligands are inducible by cellular stress and temozolomide (TMZ) or irradiation (IR), the standard treatment of glioblastoma, could affect their expression. However, a role of NKG2DL for the efficacy of TMZ and IR has never been addressed. Experimental Design: We assessed the effect of TMZ and IR on NKG2DL in vitro and in vivo in a variety of murine and human glioblastoma models, including glioma-initiating cells, and a cohort of paired glioblastoma samples from patients before and after therapy. Functional effects were studied with immune cell assays. The relevance of the NKG2D system for the efficacy of TMZ and IR was assessed in vivo in syngeneic orthotopic glioblastoma models with blocking antibodies and NKG2D knockout mice. Results: TMZ or IR induced NKG2DL in vitro and in vivo in all glioblastoma models, and glioblastoma patient samples had increased levels of NKG2DL after therapy with TMZ and IR. This enhanced the immunogenicity of glioma cells in a NGK2D-dependent manner, was independent from cytotoxic or growth inhibitory effects, attenuated by O6-methylguanine-DNA-methyltransferase (MGMT), and required the DNA damage response. The survival benefit afforded by TMZ or IR relied on an intact NKG2D system and was decreased upon inhibition of the NKG2D pathway. Conclusions: The immune system may influence the activity of convential cancer treatments with particular importance of the NKG2D pathway in glioblastoma. Our data provide a rationale to combine NKG2D-based immunotherapies with TMZ and IR. Clin Cancer Res; 24(4); 882–95. ©2017 AACR.