Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuela Temmer is active.

Publication


Featured researches published by Manuela Temmer.


The Astrophysical Journal | 2010

FIRST OBSERVATIONS OF A DOME-SHAPED LARGE-SCALE CORONAL EXTREME-ULTRAVIOLET WAVE

Astrid M. Veronig; N. Muhr; I. W. Kienreich; Manuela Temmer; Bojan Vršnak

We present first observations of a dome-shaped large-scale extreme-ultraviolet coronal wave, recorded by the Extreme Ultraviolet Imager instrument on board STEREO-B on 2010 January 17. The main arguments that the observed structure is the wave dome (and not the coronal mass ejection, CME) are (1) the spherical form and sharpness of the domes outer edge and the erupting CME loops observed inside the dome; (2) the low-coronal wave signatures above the limb perfectly connecting to the on-disk signatures of the wave; (3) the lateral extent of the expanding dome which is much larger than that of the coronal dimming; and (4) the associated high-frequency type II burst indicating shock formation low in the corona. The velocity of the upward expansion of the wave dome (v ~ 650 km s–1) is larger than that of the lateral expansion of the wave (v ~ 280 km s–1), indicating that the upward dome expansion is driven all the time, and thus depends on the CME speed, whereas in the lateral direction it is freely propagating after the CME lateral expansion stops. We also examine the evolution of the perturbation characteristics: first the perturbation profile steepens and the amplitude increases. Thereafter, the amplitude decreases with r –2.5 ± 0.3, the width broadens, and the integral below the perturbation remains constant. Our findings are consistent with the spherical expansion and decay of a weakly shocked fast-mode MHD wave.


The Astrophysical Journal | 2014

CONNECTING SPEEDS, DIRECTIONS AND ARRIVAL TIMES OF 22 CORONAL MASS EJECTIONS FROM THE SUN TO 1 AU

C. Möstl; K. Amla; J. R. Hall; Paulett C. Liewer; E. M. De Jong; Robin C. Colaninno; Astrid M. Veronig; Tanja Rollett; Manuela Temmer; V. Peinhart; J. A. Davies; Noe Lugaz; Ying D. Liu; C. J. Farrugia; J. G. Luhmann; Bojan Vršnak; R. A. Harrison; A. B. Galvin

Forecasting the in situ properties of coronal mass ejections (CMEs) from remote images is expected to strongly enhance predictions of space weather and is of general interest for studying the interaction of CMEs with planetary environments. We study the feasibility of using a single heliospheric imager (HI) instrument, imaging the solar wind density from the Sun to 1 AU, for connecting remote images to in situ observations of CMEs. We compare the predictions of speed and arrival time for 22 CMEs (in 2008-2012) to the corresponding interplanetary coronal mass ejection (ICME) parameters at in situ observatories (STEREO PLASTIC/IMPACT, Wind SWE/MFI). The list consists of front-and backsided, slow and fast CMEs (up to 2700 km s(-1)). We track the CMEs to 34.9 +/- 7.1 deg elongation from the Sun with J maps constructed using the SATPLOT tool, resulting in prediction lead times of - 26.4 +/- 15.3 hr. The geometrical models we use assume different CME front shapes (fixed-Phi, harmonic mean, self-similar expansion) and constant CME speed and direction. We find no significant superiority in the predictive capability of any of the three methods. The absolute difference between predicted and observed ICME arrival times is 8.1 +/- 6.3 hr (rms value of 10.9 hr). Speeds are consistent to within 284 +/- 288 km s(-1) . Empirical corrections to the predictions enhance their performance for the arrival times to 6.1 +/- 5.0 hr (rms value of 7.9 hr), and for the speeds to 53 +/- 50 km s(-1). These results are important for Solar Orbiter and a space weather mission positioned away from the Sun-Earth line.


Astronomy and Astrophysics | 2006

Hemispheric sunspot numbers

Manuela Temmer; Jan Rybak; P. Bendík; Astrid M. Veronig; F.L. Vogler; W. Otruba; W. Pötzi; A. Hanslmeier

From sunspot drawings provided by the Kanzelhohe Solar Observatory, Austria, and the Skalnate Pleso Observatory, Slovak Republic, we extracted a data catalogue of hemispheric Sunspot Numbers covering the time span 1945-2004. The validated catalogue includes daily, monthly-mean, and smoothed-monthly relative sunspot numbers for the northern and southern hemispheres separately and is available for scientific use. These data we then investigated with respect to north-south asymmetries for almost 6 entire solar cycles (Nos. 18-23). For all the cycles studied, we found that the asymmetry based on the absolute asymmetry index is enhanced near the cycle maximum, which contradicts to previous results that are based on the normalized asymmetry index. Moreover, the weak magnetic interdependence between the two solar hemispheres is confirmed by their self-contained evolution during a cycle. For the time span 1945-2004, we found that the cycle maxima and also the declining and increasing phases are clearly shifted, whereas the minima seem to be in phase for both hemispheres. The asymmetric behavior reveals no obvious connection to either the sunspot cycle period of ∼ 11 - or the magnetic cycle of ∼22-years. The most striking excess of activity is observed for the northern hemisphere in cycles 19 and 20.


Astronomy and Astrophysics | 2002

{R_{n}}

Astrid M. Veronig; Manuela Temmer; A. Hanslmeier; W. Otruba; M. Messerotti

A statistical analysis of almost 50 000 soft X-ray (SXR) flares observed by GOES during the period 1976–2000 is presented. On the basis of this extensive data set, statistics on temporal properties of soft X-ray flares, such as duration, rise and decay times with regard to the SXR flare classes is presented. Correlations among distinct flare parameters, i.e. SXR peak flux, fluence and characteristic times, and frequency distributions of flare occurrence as function of the peak flux, the fluence and the duration are derived. We discuss the results of the analysis with respect to statistical flare models, the idea of coronal heating by nanoflares, and elaborate on implications of the obtained results on the Neupert effect in solar flares.


The Astrophysical Journal | 2009

and

N. Gopalswamy; Seiji Yashiro; Manuela Temmer; Joseph M. Davila; William T. Thompson; S. Jones; R. T. J. McAteer; J.-P. Wuelser; Samuel Lyles Freeland; Russell A. Howard

We report on the detection of EUV wave reflection from a coronal hole, as observed by the Solar Terrestrial Relations Observatory mission. The EUV wave was associated with a coronal mass ejection (CME) erupting near the disk center. It was possible to measure the kinematics of the reflected waves for the first time. The reflected waves were generally slower than the direct wave. One of the important implications of the wave reflection is that the EUV transients are truly a wave phenomenon. The EUV wave reflection has implications for CME propagation, especially during the declining phase of the solar cycle when there are many low-latitude coronal holes.


The Astrophysical Journal | 2012

{R_{s}}

Manuela Temmer; Bojan Vršnak; Tanja Rollett; Bianca Bein; Curt A. de Koning; Ying D. Liu; Eckhard Bosman; J. A. Davies; C. Möstl; Tomislav Žic; Astrid M. Veronig; V. Bothmer; Richard A. Harrison; Nariaki V. Nitta; M. M. Bisi; Olga Flor; J. P. Eastwood; Dusan Odstrcil; R. J. Forsyth

We study the interaction of two successive coronal mass ejections (CMEs) during the 2010 August 1 events using STEREO/SECCHI COR and heliospheric imager (HI) data. We obtain the direction of motion for both CMEs by applying several independent reconstruction methods and find that the CMEs head in similar directions. This provides evidence that a full interaction takes place between the two CMEs that can be observed in the HI1 field of view. The full de-projected kinematics of the faster CME from Sun to Earth is derived by combining remote observations with in situ measurements of the CME at 1 AU. The speed profile of the faster CME (CME2; similar to 1200 km s(-1)) shows a strong deceleration over the distance range at which it reaches the slower, preceding CME (CME1; similar to 700 km s(-1)). By applying a drag-based model we are able to reproduce the kinematical profile of CME2, suggesting that CME1 represents a magnetohydrodynamic obstacle for CME2 and that, after the interaction, the merged entity propagates as a single structure in an ambient flow of speed and density typical for quiet solar wind conditions. Observational facts show that magnetic forces may contribute to the enhanced deceleration of CME2. We speculate that the increase in magnetic tension and pressure, when CME2 bends and compresses the magnetic field lines of CME1, increases the efficiency of drag.


Geophysical Research Letters | 2010

from 1945–2004: catalogue and N-S asymmetry analysis for solar cycles 18–23

C. Möstl; Manuela Temmer; Tanja Rollett; Charles J. Farrugia; Ying D. Liu; Astrid M. Veronig; M. Leitner; A. B. Galvin; H. K. Biernat

On 5 April 2010 an interplanetary (IP) shock was detected by the Wind spacecraft ahead of Earth, followed by a fast (average speed 650 km/s) IP coronal mass ejection (ICME). During the subsequent moderate geomagnetic storm (minimum Dst = -72 nT, maximum Kp=8-), communication with the Galaxy 15 satellite was lost. We link images from STEREO/SECCHI to the near-Earth in situ observations and show that the ICME did not decelerate much between Sun and Earth. The ICME flank was responsible for a long storm growth phase. This type of glancing collision was for the first time directly observed with the STEREO Heliospheric Imagers. The magnetic cloud (MC) inside the ICME cannot be modeled with approaches assuming an invariant direction. These observations confirm the hypotheses that parts of ICMEs classified as (1) long-duration MCs or (2) magnetic-cloud-like (MCL) structures can be a consequence of a spacecraft trajectory through the ICME flank.


Nature Physics | 2013

Temporal aspects and frequency distributions of solar soft x-ray flares

Yang Su; Astrid M. Veronig; Gordon D. Holman; Brian R. Dennis; Tongjiang Wang; Manuela Temmer; W. Q. Gan

Magnetic-field reconnection is believed to play a fundamental role in magnetized plasma systems throughout the Universe(1), including planetary magnetospheres, magnetars and accretion disks around black holes. This letter presents extreme ultraviolet and X-ray observations of a solar flare showing magnetic reconnection with a level of clarity not previously achieved. The multi-wavelength extreme ultraviolet observations from SDO/AIA show inflowing cool loops and newly formed, outflowing hot loops, as predicted. RHESSI X-ray spectra and images simultaneously show the appearance of plasma heated to >10MK at the expected locations. These two data sets provide solid visual evidence of magnetic reconnection producing a solar flare, validating the basic physical mechanism of popular flare models. However, new features are also observed that need to be included in reconnection and flare studies, such as three-dimensional non-uniform, non-steady and asymmetric evolution.


The Astrophysical Journal | 2012

EUV WAVE REFLECTION FROM A CORONAL HOLE

C. Möstl; C. J. Farrugia; E. K. J. Kilpua; L. K. Jian; Ying D. Liu; J. P. Eastwood; R. A. Harrison; David F. Webb; Manuela Temmer; Dusan Odstrcil; J. A. Davies; Tanja Rollett; J. G. Luhmann; Nariaki V. Nitta; T. Mulligan; E. A. Jensen; R. J. Forsyth; B. Lavraud; C. A. de Koning; Astrid M. Veronig; A. B. Galvin; T. L. Zhang; Brian J. Anderson

We present multi-point in situ observations of a complex sequence of coronal mass ejections (CMEs) which may serve as a benchmark event for numerical and empirical space weather prediction models. On 2010 August 1, instruments on various space missions, Solar Dynamics Observatory/Solar and Heliospheric Observatory/Solar-TErrestrial-RElations-Observatory (SDO/SOHO/STEREO), monitored several CMEs originating within tens of degrees from the solar disk center. We compare their imprints on four widely separated locations, spanning 120 degrees in heliospheric longitude, with radial distances from the Sun ranging from MESSENGER (0.38 AU) to Venus Express (VEX, at 0.72 AU) to Wind, ACE, and ARTEMIS near Earth and STEREO-B close to 1 AU. Calculating shock and flux rope parameters at each location points to a non-spherical shape of the shock, and shows the global configuration of the interplanetary coronal mass ejections (ICMEs), which have interacted, but do not seem to have merged. VEX and STEREO-B observed similar magnetic flux ropes (MFRs), in contrast to structures at Wind. The geomagnetic storm was intense, reaching two minima in the Dst index (approximate to-100 nT), and was caused by the sheath region behind the shock and one of two observed MFRs. MESSENGER received a glancing blow of the ICMEs, and the events missed STEREO-A entirely. The observations demonstrate how sympathetic solar eruptions may immerse at least 1/3 of the heliosphere in the ecliptic with their distinct plasma and magnetic field signatures. We also emphasize the difficulties in linking the local views derived from single-spacecraft observations to a consistent global picture, pointing to possible alterations from the classical picture of ICMEs.


The Astrophysical Journal | 2012

CHARACTERISTICS OF KINEMATICS OF A CORONAL MASS EJECTION DURING THE 2010 AUGUST 1 CME–CME INTERACTION EVENT

J. A. Davies; R. A. Harrison; C. H. Perry; C. Möstl; Noe Lugaz; Tanja Rollett; C. J. Davis; S. R. Crothers; Manuela Temmer; C. J. Eyles; N. P. Savani

Since the advent of wide-angle imaging of the inner heliosphere, a plethora of techniques have been developed to investigate the three-dimensional structure and kinematics of solar wind transients, such as coronal mass ejections, from their signatures in single- and multi-spacecraft imaging observations. These techniques, which range from the highly complex and computationally intensive to methods based on simple curve fitting, all have their inherent advantages and limitations. In the analysis of single-spacecraft imaging observations, much use has been made of the fixed fitting (FPF) and harmonic mean fitting (HMF) techniques, in which the solar wind transient is considered to be a radially propagating point source (fixed , FP, model) and a radially expanding circle anchored at Sun centre (harmonic mean, HM, model), respectively. Initially, we compare the radial speeds and propagation directions derived from application of the FPF and HMF techniques to a large set of STEREO/Heliospheric Imager (HI) observations. As the geometries on which these two techniques are founded constitute extreme descriptions of solar wind transients in terms of their extent along the line of sight, we describe a single-spacecraft fitting technique based on a more generalized model for which the FP and HM geometries form the limiting cases. In addition to providing estimates of a transients speed and propagation direction, the self-similar expansion fitting (SSEF) technique provides, in theory, the capability to estimate the transients angular extent in the plane orthogonal to the field of view. Using the HI observations, and also by performing a Monte Carlo simulation, we assess the potential of the SSEF technique.

Collaboration


Dive into the Manuela Temmer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Möstl

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. K. Biernat

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A. B. Galvin

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

C. J. Farrugia

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Jan Rybak

Slovak Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge