Manuela Truebano
Plymouth State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manuela Truebano.
Electrophoresis | 2009
Angel P. Diz; Manuela Truebano; David O. F. Skibinski
Pooling of samples in proteomics experiments might help overcome resource constraints when many individuals are analysed. The measured biological variation should be reduced giving increased power to detect treatment differences. Pooling has been advocated in microarray work but there are few tests of its potential in proteomics. In this study, we examine three issues on which the success of the pooling approach might hinge and provide evidence that: (i) the protein expression in a pool matches the mean expression of the individuals making up the pool for the majority of proteins, although for some proteins the pool expression is different; (ii) the biological variance between pools is reduced compared with that between individuals, as predicted in theory, but this reduction is not as large as expected. A practical consequence of this is that power could be reduced; (iii) proteins detectable in individual samples are usually but not always visible when samples are pooled. We conclude that pooling of samples in proteomics work is a valid and potentially valuable procedure but consideration should be given to these issues in experimental design.
Genome Biology and Evolution | 2017
Tilman Schell; Barbara Feldmeyer; Hanno Schmidt; Bastian Greshake; Oliver Tills; Manuela Truebano; Simon D. Rundle; Juraj Paule; Ingo Ebersberger; Markus Pfenninger
Molluscs are the second most species-rich phylum in the animal kingdom, yet only 11 genomes of this group have been published so far. Here, we present the draft genome sequence of the pulmonate freshwater snail Radix auricularia. Six whole genome shotgun libraries with different layouts were sequenced. The resulting assembly comprises 4,823 scaffolds with a cumulative length of 910 Mb and an overall read coverage of 72×. The assembly contains 94.6% of a metazoan core gene collection, indicating an almost complete coverage of the coding fraction. The discrepancy of ∼690 Mb compared with the estimated genome size of R. auricularia (1.6 Gb) results from a high repeat content of 70% mainly comprising DNA transposons. The annotation of 17,338 protein coding genes was supported by the use of publicly available transcriptome data. This draft will serve as starting point for further genomic and population genetic research in this scientifically important phylum.
Marine Genomics | 2016
Manuela Truebano; Oliver Tills; John I. Spicer
Environmental change can dramatically alter the development of aquatic organisms. While the effect of such change on physiological and morphological ontogenies is becoming clearer, the molecular mechanisms underpinning them are largely unexplored. Characterizing these mechanisms is often limited by the lack of molecular resources. We have applied Illumina HiSeq sequencing to RNA isolated from different developmental stages of the brackishwater amphipod Gammarus chevreuxi. Over 52.6M paired-end reads were assembled de novo into 172,081 contigs, representing 118,812 potential genes. The assembly generated constitutes a reference embryonic transcriptome for an ecologically-important aquatic shredder species. This resource will contribute to our understanding of the mechanisms underpinning the development of physiological function through functional, comparative and quantitative expression studies. It will also allow the identification of candidate biomarkers for assessing the impact of environmental stressors in estuarine systems.
Marine Genomics | 2015
Oliver Tills; Manuela Truebano; Simon D. Rundle
The pond snail, Radix balthica (Linnaeus 1758), is an emerging model species within ecological developmental biology. While its development has been characterised in detail, genomic resources for embryonic stages are lacking. We applied Illumina MiSeq RNA-seq to RNA isolated from pools of embryos at two points during development. Embryos were cultured in either the presence or absence of predator kariomones to increase the diversity of the transcripts assembled. Sequencing produced 47.2M paired-end reads, assembled into 54,360 contigs of which 73% were successfully annotated. This transcriptome provides an invaluable resource to build a mechanistic understanding of developmental plasticity.
Scientific Reports | 2018
Manuela Truebano; Oliver Tills; Michael Collins; Charlotte Clarke; Emma Shipsides; Charlotte Wheatley; John I. Spicer
The prevalence of hypoxic areas in coastal waters is predicted to increase and lead to reduced biodiversity. While the adult stages of many estuarine invertebrates can cope with short periods of hypoxia, it remains unclear whether that ability is present if animals are bred and reared under chronic hypoxia. We firstly investigated the effect of moderate, short-term environmental hypoxia (40% air saturation for one week) on metabolic performance in adults of an estuarine amphipod, and the fitness consequences of prolonged exposure. We then reared the offspring of hypoxia-exposed parents under hypoxia, and assessed their oxyregulatory ability under declining oxygen tensions as juveniles and adults. Adults from the parental generation were able to acclimate their metabolism to hypoxia after one week, employing mechanisms typically associated with prolonged exposure. Their progeny, however, did not develop the adult pattern of respiratory regulation when reared under chronic hypoxia, but instead exhibited a poorer oxyregulatory ability than their parents. We conclude that species apparently hypoxia-tolerant when tested in short-term experiments, could be physiologically compromised as adults if they develop under hypoxia. Consequently, we propose that the increased prevalence of hypoxia in coastal regions will have marked effects in some species currently considered hypoxia tolerant.
Archive | 2018
John I. Spicer; Oliver Tills; Manuela Truebano; Simon D. Rundle
There is a resurgence of interest in using phenotypic plasticity, ‘the environmentally sensitive production of alternative phenotypes by given genotypes’, as a framework in the study of evolutionary biology. The term developmental plasticity describes a more specific strand of investigation dealing with how alterations to developmental processes and outcomes shape such environmentally induced variation. Nested within developmental plasticity is the notion of heterokairy, the potential of a single genotype to alter the timing of a developmental event (e.g. onset of a particular structure, function or components of that function), in response to an environmental signal or influence. Here we make a case for using the term heterokairy as a way of focusing on altered timing across different biological disciplines, and we suggest a road map for such an approach. Heterokairy as an interdisciplinary term could be used to (a) bring together the substantial knowledge currently available of environmentally sensitive, genetic and hormonal control of the timing of developmental transitions, (b) embed the study of altered timing of developmental events within developmental plasticity and (c) highlight the role that plasticity can play in adaptive evolution, particularly in response to global environmental change.
Ecology and Evolution | 2018
Oliver Tills; Manuela Truebano; Barbara Feldmeyer; Markus Pfenninger; Holly Morgenroth; Tilman Schell; Simon D. Rundle
Abstract The ability of organisms to respond to predation threat by exhibiting induced defenses is well documented, but studies on the potential mechanistic basis for such responses are scarce. Here, we examine the transcriptomic response to predator kairomones of two functionally distinct developmental stages in embryos of the aquatic snail Radix balthica: E8—the stage at which a range‐finding trial indicated that kairomone‐induced accelerated growth and development first occurred; and E9—the stage at which embryos switched from ciliary‐ to crawling‐driven locomotion. We tested whether expression profiles were influenced by kairomones and whether this influence varied between stages. We also identified potential candidate genes for investigating mechanisms underpinning induced responses. There were 6,741 differentially expressed transcripts between developmental stages, compared to just five in response to predator kairomones. However, on examination of functional enrichment in the transcripts responding to predator kairomones and adopting a less stringent significance threshold, 206 transcripts were identified relating to muscle function, growth, and development, with this response being greater at the later E9 stage. Furthermore, these transcripts included putative annotations for genes identified as responding to predator kairomones in other taxa, including C1q, lectin, and actin domains. Globally, transcript expression appeared reduced in response to predator kairomones and we hypothesize that this might be a result of metabolic suppression, as has been reported in other taxa in response to predation threat.
Global Change Biology | 2013
Melody S. Clark; Gunnar Husmann; Michael A. S. Thorne; Gavin Burns; Manuela Truebano; Lloyd S. Peck; Doris Abele; Eva Philipp
Integrative and Comparative Biology | 2013
Piero Calosi; Lucy M. Turner; M. Hawkins; C. Bertolini; G. Nightingale; Manuela Truebano; John I. Spicer
Journal of Experimental Marine Biology and Ecology | 2013
Birgit E. Obermüller; Manuela Truebano; Lloyd S. Peck; Joseph T. Eastman; Simon A. Morley