Manuela Zoonens
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manuela Zoonens.
Annual review of biophysics | 2011
J-L Popot; Thorsten Althoff; D Bagnard; J-L Banères; P Bazzacco; Emmanuelle Billon-Denis; Laurent J. Catoire; P Champeil; D Charvolin; Melanie J. Cocco; G Crémel; T Dahmane; L M de la Maza; C Ebel; F Gabel; Fabrice Giusti; Yann Gohon; Erik Goormaghtigh; Emmanuel-Pierre Guittet; Jörg H. Kleinschmidt; Werner Kühlbrandt; C. Le Bon; K L Martinez; Melanie Picard; B Pucci; Jonathan N. Sachs; Christophe Tribet; C van Heijenoort; F Wien; F Zito
Amphipols (APols) are short amphipathic polymers that can substitute for detergents to keep integral membrane proteins (MPs) water soluble. In this review, we discuss their structure and solution behavior; the way they associate with MPs; and the structure, dynamics, and solution properties of the resulting complexes. All MPs tested to date form water-soluble complexes with APols, and their biochemical stability is in general greatly improved compared with MPs in detergent solutions. The functionality and ligand-binding properties of APol-trapped MPs are reviewed, and the mechanisms by which APols stabilize MPs are discussed. Applications of APols include MP folding and cell-free synthesis, structural studies by NMR, electron microscopy and X-ray diffraction, APol-mediated immobilization of MPs onto solid supports, proteomics, delivery of MPs to preexisting membranes, and vaccine formulation.
The Journal of Membrane Biology | 2014
Manuela Zoonens; Jean-Luc Popot
Amphipols (APols) are short amphipathic polymers that can substitute for detergents at the transmembrane surface of membrane proteins (MPs) and, thereby, keep them soluble in detergent free aqueous solutions. APol-trapped MPs are, as a rule, more stable biochemically than their detergent-solubilized counterparts. APols have proven useful to produce MPs, most noticeably by assisting their folding from the denatured state obtained after solubilizing MP inclusion bodies in either SDS or urea. They facilitate the handling in aqueous solution of fragile MPs for the purpose of proteomics, structural and functional studies, and therapeutics. Because APols can be chemically labeled or functionalized, and they form very stable complexes with MPs, they can also be used to functionalize those indirectly, which opens onto many novel applications. Following a brief recall of the properties of APols and MP/APol complexes, an update is provided of recent progress in these various fields.
European Biophysics Journal | 2010
Laurent J. Catoire; Manuela Zoonens; Carine van Heijenoort; Fabrice Giusti; Eric Guittet; Jean-Luc Popot
The atomic structure of OmpX, the smallest member of the bacterial outer membrane protein family, has been previously established by X-ray crystallography and NMR spectroscopy. In apparent conflict with electrophysiological studies, the lumen of its transmembrane β-barrel appears too tightly packed with amino acid side chains to let any solute flow through. In the present study, high-resolution solution NMR spectra were obtained of OmpX kept water-soluble by either amphipol A8-35 or the detergent dihexanoylphosphatidylcholine. Hydrogen/deuterium exchange measurements performed after prolonged equilibration show that, whatever the surfactant used, some of the amide protons of the membrane-spanning region exchange much more readily than others, which likely reflects the dynamics of the barrel.
Journal of Magnetic Resonance | 2009
Laurent J. Catoire; Manuela Zoonens; Carine van Heijenoort; Fabrice Giusti; Jean-Luc Popot; Eric Guittet
Heteronuclear dipole-to-dipole cross-relaxation has been applied to exploring intermolecular interactions and intramolecular spatial proximities in a large supramolecular structure comprised of a beta-barrel membrane protein, OmpX, in complex with a polymeric surfactant, amphipol A8-35. The experiments, performed in either the laboratory or the rotating frame, reveal the existence of intermolecular contacts between aromatic amino acids and specific groups of the polymer, in addition to intra-protein dipolar interactions, some of them involving carbonyl carbons. This study opens the perspective of collecting by NMR spectroscopy a new kind of through-space structural information involving aromatic and carbonyl (13)C atoms of large proteins.
Journal of the American Chemical Society | 2013
Manuela Zoonens; Jeffrey Comer; Sandrine Masscheleyn; Eva Pebay-Peyroula; Christophe Chipot; Bruno Miroux; François Dehez
The extraction of membrane proteins from their native environment by detergents is central to their biophysical characterization. Recent studies have emphasized that detergents may perturb the structure locally and modify the dynamics of membrane proteins. However, it remains challenging to determine whether these perturbations are negligible or could be responsible for misfolded conformations, altering the proteins function. In this work, we propose an original strategy combining functional studies and molecular simulations to address the physiological relevance of membrane protein structures obtained in the presence of detergents. We apply our strategy to a structure of isoform 2 of an uncoupling protein (UCP2) binding an inhibitor recently obtained in dodecylphosphocholine detergent micelles. Although this structure shares common traits with the ADP/ATP carrier, a member of the same protein family, its functional and biological significance remains to be addressed. In the present investigation, we demonstrate how dodecylphosphocholine severely alters the structure as well as the function of UCPs. The proposed original strategy opens new vistas for probing the physiological relevance of three-dimensional structures of membrane proteins obtained in non-native environments.
The Journal of Membrane Biology | 2014
Noelya Planchard; Elodie Point; Tassadite Dahmane; Fabrice Giusti; Marie Renault; Christel Le Bon; Grégory Durand; Alain Milon; Eric Guittet; Manuela Zoonens; Jean-Luc Popot; Laurent J. Catoire
Solution-state nuclear magnetic resonance studies of membrane proteins are facilitated by the increased stability that trapping with amphipols confers to most of them as compared to detergent solutions. They have yielded information on the state of folding of the proteins, their areas of contact with the polymer, their dynamics, water accessibility, and the structure of protein-bound ligands. They benefit from the diversification of amphipol chemical structures and the availability of deuterated amphipols. The advantages and constraints of working with amphipols are discussed and compared to those associated with other non-conventional environments, such as bicelles and nanodiscs.
The Journal of Membrane Biology | 2014
Manuel Etzkorn; Manuela Zoonens; Laurent J. Catoire; Jean-Luc Popot; Sebastian Hiller
AbstractAmphipathic polymers called amphipols provide a valuable alternative to detergents for keeping integral membrane proteins soluble in aqueous buffers. Here, we characterize spatial contacts of amphipol A8-35 with membrane proteins from two architectural classes: The 8-stranded β-barrel outer membrane protein OmpX and the α-helical protein bacteriorhodopsin. OmpX is well structured in A8-35, with its barrel adopting a fold closely similar to that in dihexanoylphosphocholine micelles. The accessibility of A8-35-trapped OmpX by a water-soluble paramagnetic molecule is highly similar to that in detergent micelles and resembles the accessibility in the natural membrane. For the α-helical protein bacteriorhodopsin, previously shown to keep its fold and function in amphipols, NMR data show that the imidazole protons of a polyhistidine tag at the N-terminus of the protein are exchange protected in the presence of detergent and lipid bilayer nanodiscs, but not in amphipols, indicating the absence of an interaction in the latter case. Overall, A8-35 exhibits protein interaction properties somewhat different from detergents and lipid bilayer nanodiscs, while maintaining the structure of solubilized integral membrane proteins.
European Biophysics Journal | 2006
Mohamed N. Triba; Manuela Zoonens; Jean-Luc Popot; Philippe F. Devaux; Dror E. Warschawski
A protocol is described for the reconstitution of a transmembrane β-barrel protein domain, tOmpA, into lipid bicelles. tOmpA is the largest protein to be reconstituted in bicelles to date. Its insertion does not prevent bicelles from orienting with their plane either parallel or perpendicular to the magnetic field, depending on the absence or presence of paramagnetic ions. In the latter case, tOmpA is shown to align with the axis of the β-barrel parallel to the magnetic field, i.e. perpendicular to the plane of the bilayer, an orientation conforming to that in natural membranes and favourable to structural studies by solid-state NMR. Reconstitution into bicelles may offer an interesting approach for structural studies of membrane proteins in a medium resembling a biological membrane, using either NMR or other biophysical techniques. Our data suggest that alignment in the magnetic field of membrane proteins included into bicelles may be facilitated if the protein is folded as a β-barrel structure.
Methods of Molecular Biology | 2010
Manuela Zoonens; Bruno Miroux
Structural biology of membrane proteins is often limited by the first steps in obtaining sufficient yields of proteins because native sources are seldom. Heterologous systems like bacteria are then commonly employed for membrane protein over-expression. Escherichia coli is the main bacterial host used. However, overproduction of a foreign membrane protein at a non-physiological level is usually toxic for cells or leads to inclusion body formation. Those effects can be reduced by optimizing the cell growth conditions, choosing the suitable bacterial strain and expression vector, and finally co-expressing the target protein and the b-subunit of E. coli adenosine triphosphate (ATP)-synthase, which triggers the proliferation of intracytoplasmic membranes. This chapter is devoted to help the experimenter in choosing the appropriate plasmid/bacterial host combination for optimizing the amount of the target membrane protein produced in its correct folded state.
ACS Nano | 2014
Eduardo Antonio Della Pia; Jeppe V. Holm; Noémie Lloret; Christel Le Bon; Jean-Luc Popot; Manuela Zoonens; Jesper Nygård; Karen L. Martinez
Whether for fundamental biological research or for diagnostic and drug discovery applications, protein micro- and nanoarrays are attractive technologies because of their low sample consumption, high-throughput, and multiplexing capabilities. However, the arraying platforms developed so far are still not able to handle membrane proteins, and specific methods to selectively immobilize these hydrophobic and fragile molecules are needed to understand their function and structural complexity. Here we integrate two technologies, electropolymerization and amphipols, to demonstrate the electrically addressable functionalization of micro- and nanosurfaces with membrane proteins. Gold surfaces are selectively modified by electrogeneration of a polymeric film in the presence of biotin, where avidin conjugates can then be selectively immobilized. The method is successfully applied to the preparation of protein-multiplexed arrays by sequential electropolymerization and biomolecular functionalization steps. The surface density of the proteins bound to the electrodes can be easily tuned by adjusting the amount of biotin deposited during electropolymerization. Amphipols are specially designed amphipathic polymers that provide a straightforward method to stabilize and add functionalities to membrane proteins. Exploiting the strong affinity of biotin for streptavidin, we anchor distinct membrane proteins onto different electrodes via a biotin-tagged amphipol. Antibody-recognition events demonstrate that the proteins are stably immobilized and that the electrodeposition of polypyrrole films bearing biotin units is compatible with the protein-binding activity. Since polypyrrole films show good conductivity properties, the platform described here is particularly well suited to prepare electronically transduced bionanosensors.