Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manus Biggs is active.

Publication


Featured researches published by Manus Biggs.


Nanomedicine: Nanotechnology, Biology and Medicine | 2010

Nanotopographical modification: a regulator of cellular function through focal adhesions

Manus Biggs; R. Geoff Richards; Matthew J. Dalby

UNLABELLED As materials technology and the field of biomedical engineering advances, the role of cellular mechanisms, in particular adhesive interactions with implantable devices, becomes more relevant in both research and clinical practice. A key tenet of medical device design has evolved from the exquisite ability of biological systems to respond to topographical features or chemical stimuli, a process that has led to the development of next-generation biomaterials for a wide variety of clinical disorders. In vitro studies have identified nanoscale features as potent modulators of cellular behavior through the onset of focal adhesion formation. The focus of this review is on the recent developments concerning the role of nanoscale structures on integrin-mediated adhesion and cellular function with an emphasis on the generation of medical constructs with regenerative applications. FROM THE CLINICAL EDITOR In this review, recent developments related to the role of nanoscale structures on integrin-mediated adhesion and cellular function is discussed, with an emphasis on regenerative applications.


Journal of Tissue Engineering | 2010

Nanotopographical Control of Stem Cell Differentiation

Laura E. McNamara; Rebecca J. McMurray; Manus Biggs; Fahsai Kantawong; Richard O.C. Oreffo; Matthew J. Dalby

Stem cells have the capacity to differentiate into various lineages, and the ability to reliably direct stem cell fate determination would have tremendous potential for basic research and clinical therapy. Nanotopography provides a useful tool for guiding differentiation, as the features are more durable than surface chemistry and can be modified in size and shape to suit the desired application. In this paper, nanotopography is examined as a means to guide differentiation, and its application is described in the context of different subsets of stem cells, with a particular focus on skeletal (mesenchymal) stem cells. To address the mechanistic basis underlying the topographical effects on stem cells, the likely contributions of indirect (biochemical signal-mediated) and direct (force-mediated) mechanotransduction are discussed. Data from proteomic research is also outlined in relation to topography-mediated fate determination, as this approach provides insight into the global molecular changes at the level of the functional effectors.


Journal of the Royal Society Interface | 2008

Adhesion formation of primary human osteoblasts and the functional response of mesenchymal stem cells to 330 nm deep microgrooves

Manus Biggs; R.G. Richards; S McFarlane; C. D. W. Wilkinson; Richard O.C. Oreffo; Matthew J. Dalby

The surface microtexture of an orthopaedic device can regulate cellular adhesion, a process fundamental in the initiation of osteoinduction and osteogenesis. Advances in fabrication techniques have evolved to include the field of surface modification; in particular, nanotechnology has allowed for the development of experimental nanoscale substrates for investigation into cell nanofeature interactions. Here primary human osteoblasts (HOBs) were cultured on ordered nanoscale groove/ridge arrays fabricated by photolithography. Grooves were 330 nm deep and either 10, 25 or 100 μm in width. Adhesion subtypes in HOBs were quantified by immunofluorescent microscopy and cell–substrate interactions were investigated via immunocytochemistry with scanning electron microscopy. To further investigate the effects of these substrates on cellular function, 1.7 K gene microarray analysis was used to establish gene regulation profiles of mesenchymal stem cells cultured on these nanotopographies. Nanotopographies significantly affected the formation of focal complexes (FXs), focal adhesions (FAs) and supermature adhesions (SMAs). Planar control substrates induced widespread adhesion formation; 100 μm wide groove/ridge arrays did not significantly affect adhesion formation yet induced upregulation of genes involved in skeletal development and increased osteospecific function; 25 μm wide groove/ridge arrays were associated with a reduction in SMA and an increase in FX formation; and 10 μm wide groove/ridge arrays significantly reduced osteoblast adhesion and induced an interplay of up- and downregulation of gene expression. This study indicates that groove/ridge topographies are important modulators of both cellular adhesion and osteospecific function and, critically, that groove/ridge width is important in determining cellular response.


Advanced Drug Delivery Reviews | 2015

Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies ☆

Marc A. Fernandez-Yague; Sunny A. Abbah; Laoise M. McNamara; Dimitrios I. Zeugolis; Abhay Pandit; Manus Biggs

The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approaches that focus on repair and reconstitution of tissue structure and function through drug release, receptor recognition, environmental responsiveness and tuned biodegradability are required. Traditional orthopedic materials lack biomimicry, and mismatches in tissue morphology, or chemical and mechanical properties ultimately accelerate device failure. Multiple stimuli have been proposed as principal contributors or mediators of cell activity and bone tissue formation, including physical (substrate topography, stiffness, shear stress and electrical forces) and biochemical factors (growth factors, genes or proteins). However, optimal solutions to bone regeneration remain elusive. This review will focus on biological and physicomechanical considerations currently being explored in bone tissue engineering.


Journal of Cellular Biochemistry | 2007

Nanotopographical stimulation of mechanotransduction and changes in interphase centromere positioning

Matthew J. Dalby; Manus Biggs; Nikolaj Gadegaard; Gabriela Kalna; Chris D. W. Wilkinson; Adam Curtis

We apply a recently developed method for controlling the spreading of cultured cells using electron beam lithography (EBL) to create polymethylmethacrylate (PMMA) substrata with repeating nanostructures. There are indications that the reduced cell spreading on these substrata, compared with planar PMMA, results from a reduced adhesivity since there are fewer adhesive structures and fewer of their associated stress fibres. The reduced cell spreading also results in a reduced nuclear area and a closer spacing of centrosomes within the nucleus, suggesting that the tension applied to the nucleus is reduced as would be expected from the reduction in stress fibres. In order to obtain further evidence for this, we have used specific inhibitors of components of the cytoskeleton and have found effects comparable with those induced by the new substrata. We have also obtained evidence that these subtrata result in downregulation of gene expression which suggests that this may be due to the changed tension on the nucleus: an intriguing possibility that merits further investigation. J. Cell. Biochem. 100: 326–338, 2007.


Biomaterials | 2012

The role of microtopography in cellular mechanotransduction.

Laura E. McNamara; Richard Burchmore; Mathis O. Riehle; Pawel Herzyk; Manus Biggs; Chris D. W. Wilkinson; Adam Curtis; Matthew J. Dalby

Mechanotransduction is crucial for cellular processes including cell survival, growth and differentiation. Topographically patterned surfaces offer an invaluable non-invasive means of investigating the cell response to such cues, and greater understanding of mechanotransduction at the cell-material interface has the potential to advance development of tailored topographical substrates and new generation implantable devices. This study focuses on the effects of topographical modulation of cell morphology on chromosomal positioning and gene regulation, using a microgrooved substrate as a non-invasive mechanostimulus. Intra-nuclear reorganisation of the nuclear lamina was noted, and the lamina was required for chromosomal repositioning. It appears that larger chromosomes could be predisposed to such repositioning. Microarrays and a high sensitivity proteomic approach (saturation DiGE) were utilised to identify transcripts and proteins that were subject to mechanoregulated changes in abundance, including mediators of chromatin remodelling and DNA synthesis linked to the changes in nucleolar morphology and the nucleoskeleton.


Advanced Drug Delivery Reviews | 2015

The past, present and future in scaffold-based tendon treatments

Alex Lomas; C.N.M. Ryan; Anna Sorushanova; N. Shologu; Aikaterini I. Sideri; Vassiliki Tsioli; G.C. Fthenakis; A. Tzora; I. Skoufos; Leo R. Quinlan; Gearóid ÓLaighin; Anne Maria Mullen; J.L. Kelly; Stephen R. Kearns; Manus Biggs; Abhay Pandit; Dimitrios I. Zeugolis

Tendon injuries represent a significant clinical burden on healthcare systems worldwide. As the human population ages and the life expectancy increases, tendon injuries will become more prevalent, especially among young individuals with long life ahead of them. Advancements in engineering, chemistry and biology have made available an array of three-dimensional scaffold-based intervention strategies, natural or synthetic in origin. Further, functionalisation strategies, based on biophysical, biochemical and biological cues, offer control over cellular functions; localisation and sustained release of therapeutics/biologics; and the ability to positively interact with the host to promote repair and regeneration. Herein, we critically discuss current therapies and emerging technologies that aim to transform tendon treatments in the years to come.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2010

Focal adhesions in osteoneogenesis

Manus Biggs; Matthew J. Dalby

Abstract As materials technology and the field of tissue engineering advance, the role of cellular adhesive mechanisms, in particular, interactions with implantable devices, becomes more relevant in both research and clinical practice. A key tenet of medical device technology is to use the exquisite ability of biological systems to respond to the material surface or chemical stimuli in order to help to develop next-generation biomaterials. The focus of this review is on recent studies and developments concerning focal adhesion formation in osteoneogenesis, with an emphasis on the influence of synthetic constructs on integrin-mediated cellular adhesion and function.


Acta Biomaterialia | 2014

Osteogenic lineage restriction by osteoprogenitors cultured on nanometric grooved surfaces: The role of focal adhesion maturation

John W. Cassidy; J.N. Roberts; Carol-Anne Smith; Mary Robertson; Kate White; Manus Biggs; Richard O.C. Oreffo; Matthew J. Dalby

The differentiation of progenitor cells is dependent on more than biochemical signalling. Topographical cues in natural bone extracellular matrix guide cellular differentiation through the formation of focal adhesions, contact guidance, cytoskeletal rearrangement and ultimately gene expression. Osteoarthritis and a number of bone disorders present as growing challenges for our society. Hence, there is a need for next generation implantable devices to substitute for, or guide, bone repair in vivo. Cellular responses to nanometric topographical cues need to be better understood in vitro in order to ensure the effective and efficient integration and performance of these orthopedic devices. In this study, the FDA-approved plastic polycaprolactone was embossed with nanometric grooves and the response of primary and immortalized osteoprogenitor cells observed. Nanometric groove dimensions were 240 nm or 540 nm deep and 12.5 μm wide. Cells cultured on test surfaces followed contact guidance along the length of groove edges, elongated along their major axis and showed nuclear distortion; they formed more focal complexes and lower proportions of mature adhesions relative to planar controls. Down-regulation of the osteoblast marker genes RUNX2 and BMPR2 in primary and immortalized cells was observed on grooved substrates. Down-regulation appeared to directly correlate with focal adhesion maturation, indicating the involvement of ERK 1/2 negative feedback pathways following integrin-mediated FAK activation.


Advanced Materials | 2016

Responsive Biomaterials: Advances in Materials Based on Shape-Memory Polymers.

John G. Hardy; Matteo Palma; Shalom J. Wind; Manus Biggs

Shape-memory polymers (SMPs) are morphologically responsive materials with potential for a variety of biomedical applications, particularly as devices for minimally invasive surgery and the delivery of therapeutics and cells for tissue engineering. A brief introduction to SMPs is followed by a discussion of the current progress toward the development of SMP-based biomaterials for clinically relevant biomedical applications.

Collaboration


Dive into the Manus Biggs's collaboration.

Top Co-Authors

Avatar

Abhay Pandit

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dimitrios I. Zeugolis

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katarzyna Krukiewicz

Silesian University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge