Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maoguo Gong is active.

Publication


Featured researches published by Maoguo Gong.


electronic commerce | 2008

Multiobjective immune algorithm with nondominated neighbor-based selection

Maoguo Gong; Licheng Jiao; Haifeng Du; Liefeng Bo

Nondominated Neighbor Immune Algorithm (NNIA) is proposed for multiobjective optimization by using a novel nondominated neighbor-based selection technique, an immune inspired operator, two heuristic search operators, and elitism. The unique selection technique of NNIA only selects minority isolated nondominated individuals in the population. The selected individuals are then cloned proportionally to their crowding-distance values before heuristic search. By using the nondominated neighbor-based selection and proportional cloning, NNIA pays more attention to the less-crowded regions of the current trade-off front. We compare NNIA with NSGA-II, SPEA2, PESA-II, and MISA in solving five DTLZ problems, five ZDT problems, and three low-dimensional problems. The statistical analysis based on three performance metrics including the coverage of two sets, the convergence metric, and the spacing, show that the unique selection method is effective, and NNIA is an effective algorithm for solving multiobjective optimization problems. The empirical study on NNIAs scalability with respect to the number of objectives shows that the new algorithm scales well along the number of objectives.


IEEE Transactions on Image Processing | 2013

Fuzzy C-Means Clustering With Local Information and Kernel Metric for Image Segmentation

Maoguo Gong; Yan Liang; Jiao Shi; Wenping Ma; Jingjing Ma

In this paper, we present an improved fuzzy C-means (FCM) algorithm for image segmentation by introducing a tradeoff weighted fuzzy factor and a kernel metric. The tradeoff weighted fuzzy factor depends on the space distance of all neighboring pixels and their gray-level difference simultaneously. By using this factor, the new algorithm can accurately estimate the damping extent of neighboring pixels. In order to further enhance its robustness to noise and outliers, we introduce a kernel distance measure to its objective function. The new algorithm adaptively determines the kernel parameter by using a fast bandwidth selection rule based on the distance variance of all data points in the collection. Furthermore, the tradeoff weighted fuzzy factor and the kernel distance measure are both parameter free. Experimental results on synthetic and real images show that the new algorithm is effective and efficient, and is relatively independent of this type of noise.


IEEE Transactions on Image Processing | 2012

Change Detection in Synthetic Aperture Radar Images based on Image Fusion and Fuzzy Clustering

Maoguo Gong; Zhiqiang Zhou; Jingjing Ma

This paper presents an unsupervised distribution-free change detection approach for synthetic aperture radar (SAR) images based on an image fusion strategy and a novel fuzzy clustering algorithm. The image fusion technique is introduced to generate a difference image by using complementary information from a mean-ratio image and a log-ratio image. In order to restrain the background information and enhance the information of changed regions in the fused difference image, wavelet fusion rules based on an average operator and minimum local area energy are chosen to fuse the wavelet coefficients for a low-frequency band and a high-frequency band, respectively. A reformulated fuzzy local-information C-means clustering algorithm is proposed for classifying changed and unchanged regions in the fused difference image. It incorporates the information about spatial context in a novel fuzzy way for the purpose of enhancing the changed information and of reducing the effect of speckle noise. Experiments on real SAR images show that the image fusion strategy integrates the advantages of the log-ratio operator and the mean-ratio operator and gains a better performance. The change detection results obtained by the improved fuzzy clustering algorithm exhibited lower error than its preexistences.


IEEE Transactions on Geoscience and Remote Sensing | 2008

Spectral Clustering Ensemble Applied to SAR Image Segmentation

Xiangrong Zhang; Licheng Jiao; Fang Liu; Liefeng Bo; Maoguo Gong

Spectral clustering (SC) has been used with success in the field of computer vision for data clustering. In this paper, a new algorithm named SC ensemble (SCE) is proposed for the segmentation of synthetic aperture radar (SAR) images. The gray-level cooccurrence matrix-based statistic features and the energy features from the undecimated wavelet decomposition extracted for each pixel being the input, our algorithm performs segmentation by combining multiple SC results as opposed to using outcomes of a single clustering process in the existing literature. The random subspace, random scaling parameter, and Nystrom approximation for component SC are applied to construct the SCE. This technique provides necessary diversity as well as high quality of component learners for an efficient ensemble. It also overcomes the shortcomings faced by the SC, such as the selection of scaling parameter, and the instability resulted from the Nystrom approximation method in image segmentation. Experimental results show that the proposed method is effective for SAR image segmentation and insensitive to the scaling parameter.


IEEE Transactions on Evolutionary Computation | 2014

Complex Network Clustering by Multiobjective Discrete Particle Swarm Optimization Based on Decomposition

Maoguo Gong; Qing Cai; Xiaowei Chen; Lijia Ma

The field of complex network clustering has been very active in the past several years. In this paper, a discrete framework of the particle swarm optimization algorithm is proposed. Based on the proposed discrete framework, a multiobjective discrete particle swarm optimization algorithm is proposed to solve the network clustering problem. The decomposition mechanism is adopted. A problem-specific population initialization method based on label propagation and a turbulence operator are introduced. In the proposed method, two evaluation objectives termed as kernel k-means and ratio cut are to be minimized. However, the two objectives can only be used to handle unsigned networks. In order to deal with signed networks, they have been extended to the signed version. The clustering performances of the proposed algorithm have been validated on signed networks and unsigned networks. Extensive experimental studies compared with ten state-of-the-art approaches prove that the proposed algorithm is effective and promising.


IEEE Signal Processing Letters | 2011

Position-Patch Based Face Hallucination Using Convex Optimization

Cheolkon Jung; Licheng Jiao; Bing Liu; Maoguo Gong

We provide a position-patch based face hallucination method using convex optimization. Recently, a novel position-patch based face hallucination method has been proposed to save computational time and achieve high-quality hallucinated results. This method has employed least square estimation to obtain the optimal weights for face hallucination. However, the least square estimation approach can provide biased solutions when the number of the training position-patches is much larger than the dimension of the patch. To overcome this problem, this letter proposes a new position-patch based face hallucination method which is based on convex optimization. Experimental results demonstrate that our method is very effective in producing high-quality hallucinated face images.


systems man and cybernetics | 2008

Quantum-Inspired Immune Clonal Algorithm for Global Optimization

Licheng Jiao; Yangyang Li; Maoguo Gong; Xiangrong Zhang

Based on the concepts and principles of quantum computing, a novel immune clonal algorithm, called a quantum-inspired immune clonal algorithm (QICA), is proposed to deal with the problem of global optimization. In QICA, the antibody is proliferated and divided into a set of subpopulation groups. The antibodies in a subpopulation group are represented by multistate gene quantum bits. In the antibodys updating, the general quantum rotation gate strategy and the dynamic adjusting angle mechanism are applied to accelerate convergence. The quantum NOT gate is used to realize quantum mutation to avoid premature convergences. The proposed quantum recombination realizes the information communication between subpopulation groups to improve the search efficiency. Theoretical analysis proves that QICA converges to the global optimum. In the first part of the experiments, 10 unconstrained and 13 constrained benchmark functions are used to test the performance of QICA. The results show that QICA performs much better than the other improved genetic algorithms in terms of the quality of solution and computational cost. In the second part of the experiments, QICA is applied to a practical problem (i.e., multiuser detection in direct-sequence code-division multiple-access systems) with a satisfying result.


IEEE Transactions on Fuzzy Systems | 2014

Fuzzy Clustering With a Modified MRF Energy Function for Change Detection in Synthetic Aperture Radar Images

Maoguo Gong; Linzhi Su; Meng Jia; Weisheng Chen

In this paper, we put forward a novel approach for change detection in synthetic aperture radar (SAR) images. The approach classifies changed and unchanged regions by fuzzy c-means (FCM) clustering with a novel Markov random field (MRF) energy function. In order to reduce the effect of speckle noise, a novel form of the MRF energy function with an additional term is established to modify the membership of each pixel. In addition, the degree of modification is determined by the relationship of the neighborhood pixels. The specific form of the additional term is contingent upon different situations, and it is established ultimately by utilizing the least-square method. There are two aspects to our contributions. First, in order to reduce the effect of speckle noise, the proposed approach focuses on modifying the membership instead of modifying the objective function. It is computationally simple in all the steps involved. Its objective function can just return to the original form of FCM, which leads to its consuming less time than that of some obviously recently improved FCM algorithms. Second, the proposed approach modifies the membership of each pixel according to a novel form of the MRF energy function through which the neighbors of each pixel, as well as their relationship, are concerned. Theoretical analysis and experimental results on real SAR datasets show that the proposed approach can detect the real changes as well as mitigate the effect of speckle noises. Theoretical analysis and experiments also demonstrate its low time complexity.


IEEE Transactions on Geoscience and Remote Sensing | 2014

A Novel Coarse-to-Fine Scheme for Automatic Image Registration Based on SIFT and Mutual Information

Maoguo Gong; Shengmeng Zhao; Licheng Jiao; Dayong Tian; Shuang Wang

Automatic image registration is a vital yet challenging task, particularly for remote sensing images. A fully automatic registration approach which is accurate, robust, and fast is required. For this purpose, a novel coarse-to-fine scheme for automatic image registration is proposed in this paper. This scheme consists of a preregistration process (coarse registration) and a fine-tuning process (fine registration). To begin with, the preregistration process is implemented by the scale-invariant feature transform approach equipped with a reliable outlier removal procedure. The coarse results provide a near-optimal initial solution for the optimizer in the fine-tuning process. Next, the fine-tuning process is implemented by the maximization of mutual information using a modified Marquardt-Levenberg search strategy in a multiresolution framework. The proposed algorithm is tested on various remote sensing optical and synthetic aperture radar images taken at different situations (multispectral, multisensor, and multitemporal) with the affine transformation model. The experimental results demonstrate the accuracy, robustness, and efficiency of the proposed algorithm.


Information Sciences | 2010

Baldwinian learning in clonal selection algorithm for optimization

Maoguo Gong; Licheng Jiao; Lining Zhang

Artificial immune systems are a kind of new computational intelligence methods which draw inspiration from the human immune system. Most immune system inspired optimization algorithms are based on the applications of clonal selection and hypermutation, and known as clonal selection algorithms. These clonal selection algorithms simulate the immune response process based on principles of Darwinian evolution by using various forms of hypermutation as variation operators. The generation of new individuals is a form of the trial and error process. It seems very wasteful not to make use of the Baldwin effect in immune system to direct the genotypic changes. In this paper, based on the Baldwin effect, an improved clonal selection algorithm, Baldwinian Clonal Selection Algorithm, termed as BCSA, is proposed to deal with optimization problems. BCSA evolves and improves antibody population by four operators, clonal proliferation, Baldwinian learning, hypermutation, and clonal selection. It is the first time to introduce the Baldwinian learning into artificial immune systems. The Baldwinian learning operator simulates the learning mechanism in immune system by employing information from within the antibody population to alter the search space. It makes use of the exploration performed by the phenotype to facilitate the evolutionary search for good genotypes. In order to validate the effectiveness of BCSA, eight benchmark functions, six rotated functions, six composition functions and a real-world problem, optimal approximation of linear systems are solved by BCSA, successively. Experimental results indicate that BCSA performs very well in solving most of the test problems and is an effective and robust algorithm for optimization.

Collaboration


Dive into the Maoguo Gong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge