Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maqsood A. Chotani is active.

Publication


Featured researches published by Maqsood A. Chotani.


Journal of Biological Chemistry | 2007

The Human Angiotensin II Type 1 Receptor +1166 A/C Polymorphism Attenuates MicroRNA-155 Binding

Mickey M. Martin; Jessica A. Buckenberger; Jinmai Jiang; Geraldine E. Malana; Gerard J. Nuovo; Maqsood A. Chotani; David S. Feldman; Thomas D. Schmittgen; Terry S. Elton

The adverse effects of angiotensin II (Ang II) are primarily mediated through the Ang II type 1 receptor (AT1R). A silent polymorphism (+1166 A/C) in the human AT1R gene has been associated with cardiovascular disease, possibly as a result of enhanced AT1R activity. Because this polymorphism occurs in the 3′-untranslated region of the human AT1R gene, the biological importance of this mutation has always been questionable. Computer alignment demonstrated that the +1166 A/C polymorphism occurred in a cis-regulatory site, which is recognized by a specific microRNA (miRNA), miR-155. miRNAs are noncoding RNAs that silence gene expression by base-pairing with complementary sequences in the 3′-untranslated region of target RNAs. When the +1166 C-allele is present, base-pairing complementarity is interrupted, and the ability of miR-155 to interact with the cis-regulatory site is decreased. As a result, miR-155 no longer attenuates translation as efficiently as demonstrated by luciferase reporter and Ang II radioreceptor binding assays. In situ hybridization experiments demonstrated that mature miR-155 is abundantly expressed in the same cell types as the AT1R (e.g. endothelial and vascular smooth muscle). Finally, when human primary vascular smooth muscle cells were transfected with an antisense miR-155 inhibitor, endogenous human AT1R expression and Ang II-induced ERK1/2 activation were significantly increased. Taken together, our study demonstrates that the AT1R and miR-155 are co-expressed and that miR-155 translationally represses the expression of AT1R in vivo. Therefore, our study provides the first feasible biochemical mechanism by which the +1166 A/C polymorphism can lead to increased AT1R densities and possibly cardiovascular disease.


Rheumatic Diseases Clinics of North America | 2003

The vasculopathy of Raynaud's phenomenon and scleroderma.

Nicholas A. Flavahan; Sheila Flavahan; Srabani Mitra; Maqsood A. Chotani

The scleroderma (SSc) disease process involves dramatic dysfunction in acute and chronic vascular regulatory mechanisms; it presents initially with heightened vasoconstrictor or vasospastic activity and progresses to structural derangement or vasculopathy of the microcirculation. This article discusses the regulatory mechanisms that contribute to this dysfunction and the vascular changes in the context of the other aspects of the SSc disease process in a novel attempt to integrate the individual pathologies of the disease process.


Journal of Molecular Biology | 2009

Mapping of DDR1 Distribution and Oligomerization on the Cell Surface by FRET Microscopy

Cosmin Mihai; Maqsood A. Chotani; Terry S. Elton; Gunjan Agarwal

Activation of discoidin domain receptor (DDR) 1 by collagen is reported to regulate cell migration and survival processes. While the oligomeric state of DDR1 is reported to play a significant role in collagen binding, not much is known about the effect of collagen binding on DDR1 oligomerization and cellular distribution. Using fluorescence resonance energy transfer (FRET) microscopy, we monitored the interaction between DDR1 tagged with cyan fluorescent protein and DDR1 tagged with yellow fluorescent protein in live cells. Significant FRET signal indicative of receptor dimerization was found even in the absence of collagen stimulation. Collagen stimulation induced aggregation of DDR1, followed by a sharp increase in FRET signal, localized in the regions of aggregated receptor. Further analysis of DDR1 aggregation revealed that DDR1 undergoes cytoplasmic internalization and incorporation into the early endosome. We found the kinetics of DDR1 internalization to be fast, with a significant percentage of the receptor population being internalized in the first few minutes of collagen stimulation. Our results indicate that collagen stimulation induces the aggregation and internalization of DDR1 dimers at timescales much before receptor activation. These findings provide new insights into the cellular redistribution of DDR1 following its interaction with collagen type I.


Journal of Biological Chemistry | 2007

Vascular Hypertrophy and Hypertension Caused by Transgenic Overexpression of Profilin 1

Moustafa Moustafa-Bayoumi; Mazin Alhaj; Osama El-Sayed; Sheik Wisel; Maqsood A. Chotani; Zeinb A. Abouelnaga; Mohamed D. H. Hassona; Katya Rigatto; Mariana Morris; Gerard J. Nuovo; Jay L. Zweier; Pascal J. Goldschmidt-Clermont; Hamdy H. Hassanain

We have overexpressed either the cDNA of human profilin 1 or expressed the mutant (88R/L) in the blood vessels of transgenic FVB/N mice. Reverse transcription-PCR indicated selective overexpression of profilin 1 and 88R/L in vascular smooth muscle cells. Polyproline binding showed increased profilin 1 and 88R/L proteins in transgenic mice compared with control (∼30%, p < 0.05). Rhodamine-phalloidin staining revealed increase stress fiber formation in vascular smooth muscle cells of profilin 1 compared with 88R/L and control. Hematoxylin and eosin staining showed clear signs of vascular hypertrophy in the aorta of profilin 1 mice versus 88R/L and control. However, there were no differences between 88R/L and control mice. Western blotting confirmed the activation of the hypertrophic signaling cascades in aortas of profilin 1 mice. Phospho-ERK1/2 was significantly higher in profilin 1 than 88R/L and control (512.3 and 361.7%, respectively, p < 0.05). Profilin 1 mice had significant increases in phospho-JNK as compared with 88R/L and control (371.4 and 346%, respectively, p < 0.05). However, there were no differences between 88R/L and control mice in both kinases. There was a significant increase in ROCK II kinase in the aorta of profilin 1 mice compared with controls (>400%, p < 0.05). Tail cuff and circadian monitoring of blood pressure showed significant increases in systolic and mean arterial blood pressures of profilin 1 mice starting at age 6 months compared with controls (∼25 mm Hg, p < 0.05). These results suggest that increased actin polymerization in blood vessels triggers activation of the hypertrophic signaling cascades and results in elevation of blood pressure at advanced age.


Life Sciences | 2011

Rap1 GTPases: an emerging role in the cardiovasculature.

Selvi C. Jeyaraj; Nicholas T. Unger; Maqsood A. Chotani

The Ras related GTPase Rap has been implicated in multiple cellular functions. A vital role for Rap GTPase in the cardiovasculature is emerging from recent studies. These small monomeric G proteins act as molecular switches, coupling extracellular stimulation to intracellular signaling through second messengers. This member of the Ras superfamily was once described as the transformation suppressor with the ability to ameliorate the Ras transformed phenotype; however, further studies uncovered a unique set of guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) and effector proteins for Rap suggesting a more sophisticated role for this small GTPase. At least three different second messengers can activate Rap, namely cyclic AMP (cAMP), calcium and diacylglycerol. More recently, an investigation of Rap in the cardiovasculature has revealed multiple pathways of regulation involving Rap in this system. Two closely related isoforms of Rap1 exist, 1a and 1b. Murine genetic models exist for both and have been described. Although thought at first to be functionally redundant, these isoforms have differing roles in the cardiovasculature. The activation of Rap1a and 1b in various cell types of the cardiovasculature leads to alterations in cell attachment, migration and cell junction formation. This review will focus on the role of these Rap1 GTPases in hematopoietic, endothelial, smooth muscle, and cardiac myocyte function, and conclude with their potential role in human disease.


Journal of Biological Chemistry | 2000

The small GTPases Ras, Rac, and Cdc42 transcriptionally regulate expression of human fibroblast growth factor 1.

Maqsood A. Chotani; Kathy Touhalisky; Ing-Ming Chiu

Four distinct promoters (1A, 1B, 1C, and 1D) of fibroblast growth factor 1 (FGF1), spaced up to 70 kilobase pairs apart, direct the expression of alternatively spliced transcript variants (FGF1.A, -1.B, -1.C, and-1.D) that encode FGF1. These FGF1transcripts can be detected in cultured cells as well as in normal and diseased tissues. These transcripts are differentially regulated in a cell-specific manner. To further delineate the biological function of multiple promoter usage by a single gene, we investigated the transcriptional regulation of these promoters by defined signaling pathways associated with cell proliferation and cell survival. Here we show a specific association of two of the FGF1 promoters, 1C and 1D, with signaling cascades of the Ras superfamily of GTPases. A serum-response element, comprised of the Ets and CArG motifs, present in promoter 1D was shown to be the target of distinct signaling cascades; the Ets motif target of Ras, Rac1, and Cdc42 regulation; and the CArG motif target of de novo protein synthesis-independent cascade. Ras and Rac1 also activated theFGF2 promoter. Further, the transcription factor Ets2 synergistically activated FGF1 gene, but notFGF2, in a Ras- and Rac1-dependent signaling pathway. In support of these conclusions high levels of intracellularFGF1 were detected in cells undergoing cytokinesis. Altogether, our results suggest that FGF1 may play a fundamental role in cell division, spreading, and migration, in addition to cell proliferation.


American Journal of Physiology-cell Physiology | 2013

Cyclic AMP-Rap1A signaling mediates cell surface translocation of microvascular smooth muscle α2C-adrenoceptors through the actin-binding protein filamin-2.

Hanaa K. B. Motawea; Selvi C. Jeyaraj; Ali H. Eid; Srabani Mitra; Nicholas T. Unger; Amany A.E. Ahmed; Nicholas A. Flavahan; Maqsood A. Chotani

The second messenger cyclic AMP (cAMP) plays a vital role in vascular physiology, including vasodilation of large blood vessels. We recently demonstrated cAMP activation of Epac-Rap1A and RhoA-Rho-associated kinase (ROCK)-F-actin signaling in arteriolar-derived smooth muscle cells increases expression and cell surface translocation of functional α2C-adrenoceptors (α2C-ARs) that mediate vasoconstriction in small blood vessels (arterioles). The Ras-related small GTPAse Rap1A increased expression of α2C-ARs and also increased translocation of perinuclear α2C-ARs to intracellular F-actin and to the plasma membrane. This study examined the mechanism of translocation to better understand the role of these newly discovered mediators of blood flow control, potentially activated in peripheral vascular disorders. We utilized a yeast two-hybrid screen with human microvascular smooth muscle cells (microVSM) cDNA library and the α2C-AR COOH terminus to identify a novel interaction with the actin cross-linker filamin-2. Yeast α-galactosidase assays, site-directed mutagenesis, and coimmunoprecipitation experiments in heterologous human embryonic kidney (HEK) 293 cells and in human microVSM demonstrated that α2C-ARs, but not α2A-AR subtype, interacted with filamin. In Rap1-stimulated human microVSM, α2C-ARs colocalized with filamin on intracellular filaments and at the plasma membrane. Small interfering RNA-mediated knockdown of filamin-2 inhibited Rap1-induced redistribution of α2C-ARs to the cell surface and inhibited receptor function. The studies suggest that cAMP-Rap1-Rho-ROCK signaling facilitates receptor translocation and function via phosphorylation of filamin-2 Ser(2113). Together, these studies extend our previous findings to show that functional rescue of α2C-ARs is mediated through Rap1-filamin signaling. Perturbation of this signaling pathway may lead to alterations in α2C-AR trafficking and physiological function.


Biochimica et Biophysica Acta | 2011

Intracellular α2C-Adrenoceptors: Storage depot, stunted development or signaling domain?

Maqsood A. Chotani; Nicholas A. Flavahan

G-protein coupled receptors (GPCRs) are generally considered to function as cell surface signaling structures that respond to extracellular mediators, many of which do not readily access the cells interior. Indeed, most GPCRs are preferentially targeted to the plasma membrane. However, some receptors, including α(2C)-Adrenoceptors, challenge conventional concepts of GPCR activity by being preferentially retained and localized within intracellular organelles. This review will address the issues associated with this unusual GPCR localization and discuss whether it represents a novel sub-cellular niche for GPCR signaling, whether these receptors are being stored for rapid deployment to the cell surface, or whether they represent immature or incomplete receptor systems.


Life Sciences | 2016

Preconditioning of mesenchymal stem cells with 2,4-dinitrophenol improves cardiac function in infarcted rats

Irfan Khan; Anwar Ali; Muhammad Aleem Akhter; Nadia Naeem; Maqsood A. Chotani; Tuba Mustafa; Asmat Salim

AIMS The aim of this study is to determine if preconditioning of bone marrow derived mesenchymal stem cells (MSCs) with 2,4-dinitrophenol (DNP) improves survival of transplanted stem cells in a rat model of myocardial infarction (MI), and to asses if this strategy has measurable impact on cardiac function. MAIN METHODS MSCs were preconditioned with DNP. In vitro cell adhesion assay and qRT-PCR were performed to analyze the expression of genes involved in cardiomyogenesis, cell adhesion and angiogenesis. MI was produced by occlusion of left anterior descending coronary artery. One million cells were transplanted by intramyocardial injection into the infarcted myocardium. Echocardiography was performed after two and four weeks of cellular transplantation. Hearts were harvested after four weeks and processed for histological analysis. KEY FINDINGS DNP treated MSCs adhered to the surface more (p<0.001) as compared to the normal MSCs. Gene expression levels were significantly upregulated in case of DNP treatment. The number of viable MSCs was more (p<0.001) in animals that received DNP treated MSCs, leading to significant improvement in cardiac function. Histological analysis revealed significant reduction in scar formation (p<0.001), maintenance of left ventricular wall thickness (p<0.001), and increased angiogenesis (p<0.01). SIGNIFICANCE The study evidenced for the first time that MSCs preconditioned with DNP improved cardiac function after transplantation. This can be attributed to improved survival, homing, adhesion, and cardiomyogenic and angiogenic differentiation of DNP treated MSCs in vivo.


PLOS ONE | 2014

In Silico Modeling of Human α2C-Adrenoreceptor Interaction with Filamin-2

Marcin Pawlowski; Saras Saraswathi; Hanaa K. B. Motawea; Maqsood A. Chotani; Andrzej Kloczkowski

Vascular smooth muscle α2C-adrenoceptors (α2C-ARs) mediate vasoconstriction of small blood vessels, especially arterioles. Studies of endogenous receptors in human arteriolar smooth muscle cells (referred to as microVSM) and transiently transfected receptors in heterologous HEK293 cells show that the α2C-ARs are perinuclear receptors that translocate to the cell surface under cellular stress and elicit a biological response. Recent studies in microVSM unraveled a crucial role of Rap1A-Rho-ROCK-F-actin pathways in receptor translocation, and identified protein-protein interaction of α2C-ARs with the actin binding protein filamin-2 as an essential step in the process. To better understand the molecular nature and specificity of this interaction, in this study, we constructed comparative models of human α2C-AR and human filamin-2 proteins. Finally, we performed in silico protein-protein docking to provide a structural platform for the investigation of human α2C-AR and filamin-2 interactions. We found that electrostatic interactions seem to play a key role in this complex formation which manifests in interactions between the C-terminal arginines of α2C-ARs (particularly R454 and R456) and negatively charged residues from filamin-2 region between residues 1979 and 2206. Phylogenetic and sequence analysis showed that these interactions have evolved in warm-blooded animals.

Collaboration


Dive into the Maqsood A. Chotani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Selvi C. Jeyaraj

The Research Institute at Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ali H. Eid

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

Nicholas T. Unger

The Research Institute at Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Paul El-Dahdah

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge