Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mar Carrión is active.

Publication


Featured researches published by Mar Carrión.


Arthritis & Rheumatism | 2008

Differential expression of vasoactive intestinal peptide and its functional receptors in human osteoarthritic and rheumatoid synovial fibroblasts.

Yasmina Juarranz; Irene Gutiérrez-Cañas; Begoña Santiago; Mar Carrión; José L. Pablos; Rosa P. Gomariz

OBJECTIVE Vasoactive intestinal peptide (VIP) has shown potent antiinflammatory effects in murine arthritis and ex vivo in human rheumatoid arthritis (RA) synovial cells. To investigate the potential endogenous participation of this system in the pathogenesis of RA, we analyzed the expression and regulation of VIP and its functional receptors in human fibroblast-like synoviocytes (FLS) from patients with osteoarthritis (OA) and patients with RA. METHODS The expression of VIP was studied by reverse transcription-polymerase chain reaction (RT-PCR), enzyme immunoassay, and immunofluorescence in cultured FLS, and by immunohistochemical analysis in synovial tissue. The expression and function of the potential VIP receptors in FLS were studied by RT-PCR, determination of intracellular cAMP production, cell membrane adenylate cyclase (AC) activity, and interleukin-6, CCL2, and CXCL8 production in response to VIP or specific agonists and antagonists. RESULTS VIP expression was detected in human FLS at the messenger RNA and protein levels, and it was significantly decreased in RA FLS compared with OA FLS. VIP receptor type 1 (VPAC1) was the dominant AC-coupled receptor in OA FLS, in contrast with RA FLS, in which VPAC2 was dominant. Tumor necrosis factor alpha-treated OA FLS reproduced the VIP and VPAC receptor expression pattern of RA FLS. The antagonistic effects of VIP on FLS proinflammatory factor production were reproduced by VPAC1- and VPAC2-specific agonists in OA FLS and RA FLS, respectively. CONCLUSION VIP expression is down-regulated in RA and in tumor necrosis factor alpha-treated FLS, suggesting that down-regulation of this endogenous antiinflammatory factor may contribute to the pathogenesis of RA. In RA FLS, VPAC2 mediates the antiinflammatory effects of VIP, suggesting that VPAC2 agonists may be an alternative to VIP as antiinflammatory agents.


Rheumatology | 2013

IL-22/IL-22R1 axis and S100A8/A9 alarmins in human osteoarthritic and rheumatoid arthritis synovial fibroblasts

Mar Carrión; Yasmina Juarranz; Carmen Martinez; Isidoro González-Álvaro; José L. Pablos; Irene Gutiérrez-Cañas; Rosa P. Gomariz

OBJECTIVES Fibroblast-like synoviocytes (FLSs) are crucial players in the pathogenesis of synovitis in rheumatic diseases. Targeting FLS activation represents an approach to the development of therapeutic strategies. Our aim was to investigate whether the microenvironment of inflamed joints could modulate the expression of IL-22 and IL-22R1 on OA and RA FLSs. We also examined the effect of IL-22 on FLS activation as well as on their IL-17-related responses. METHODS IL-22 and IL-22R1 expression was studied by RT-PCR and immunoblotting. Proliferation was measured by an ELISA kit. IL-17 receptors, p19IL-23 and alarmins were analysed by RT-PCR. IL-17 receptor expression was evaluated by flow cytometry. MMP1 and IL-23 were measured by ELISA. S100A8/A9 expression was detected by immunofluorescence and ELISA. Signal transducer and activator of transcription 3 (STAT3) phosphorylation was quantified using a cell-based ELISA kit. RESULTS IL-22 and IL-22R1 were expressed constitutively in FLSs. We demonstrated that S100A8 and S100A9 were synthesized in FLSs. We reported that inflammatory mediators increased the expression of the IL-22/IL-22R1 axis, amplifying FLS activation. IL-22 enhanced FLS proliferation and up-regulated MMP1 and S100A8/A9 production. STAT3 phosphorylation was induced after IL-22 treatment and the stimulatory effect of IL-22 on S100A8/A9 was reduced after the activities of Janus kinase 2 (JAK2) and JAK3 were blocked. We showed an inhibitory action of IL-22 on IL-23 and IL-17RC expression in RA FLSs and on IL-17RA in OA FLSs. CONCLUSION Therapies based on the pharmacological disruption signalling of IL-22 could be beneficial for the treatment of rheumatic diseases. The restricted expression of IL-22R1 to non-lymphoid cells could lead to a reduction of side effects mediated by immune responses.


Arthritis & Rheumatism | 2011

RNA sensors in human osteoarthritis and rheumatoid arthritis synovial fibroblasts: Immune regulation by vasoactive intestinal peptide

Mar Carrión; Yasmina Juarranz; Selene Pérez-García; Rebeca Jimeno; José L. Pablos; Rosa P. Gomariz; Irene Gutiérrez-Cañas

OBJECTIVE The aim of this study was to analyze both the constitutive and induced expression and function of double-stranded RNA (dsRNA; Toll-like receptor 3 [TLR-3], retinoic acid-inducible gene I [RIG-I], and melanoma differentiation-associated gene 5 [MDA5]) and single-stranded RNA (ssRNA; TLR-7) receptors in osteoarthritis (OA) and rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS), by studying the transcription factors involved and the subsequent effects on antiviral interferon-β (IFNβ), the proinflammatory CXCL8 chemokine, and matrix metalloproteinase 3 (MMP-3). An additional goal was to study the effect of vasoactive intestinal peptide (VIP). METHODS The expression of TLR-3, TLR-7, RIG-I, and MDA5 in cultured FLS was studied by reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and Western blotting. Transcription factors were studied using the ELISA-based TransAM transcription factor kit. The expression of IFNβ, CXCL8 (interleukin-8), and MMP-3 was analyzed by RT-PCR and ELISA. RESULTS FLS expressed TLR-3, TLR-7, RIG-I, and MDA5. The expression of TLR-3 and RIG-I was higher in RA FLS, while the expression of TLR-7 and MDA5 was higher in OA FLS. Stimulation with poly(I-C) induced the activation of IFN regulatory factor 3 (IRF-3), NF-κB, and activator protein 1 (AP-1) c-Jun as well as the subsequent production of IFNβ, CXCL8, and MMP-3. VIP reduced the activation of IRF-3 and the production of IFNβ in both OA and RA FLS. Imiquimod induced the activation of NF-κB, AP-1 c-Fos, and AP-1 c-Jun and the synthesis of CXCL8 and MMP-3. VIP significantly diminished MMP-3 production only in imiquimod-treated RA FLS. CONCLUSION The results of this study revealed a prominent function of FLS in the recognition of both dsRNA and ssRNA, which may be present in the joint microenvironment. This study also advances the healing function of the endogenous neuroimmune peptide VIP, which inhibited TLR-3-, RIG-I-, MDA5-, and TLR-7-mediated stimulation of antiviral, proinflammatory, and joint destruction mediators.


Molecular Immunology | 2008

VIP reverses the expression profiling of TLR4-stimulated signaling pathway in rheumatoid arthritis synovial fibroblasts

Alicia Arranz; Irene Gutiérrez-Cañas; Mar Carrión; Yasmina Juarranz; José L. Pablos; Carmen Martinez; Rosa P. Gomariz

Since recent evidences point out the potential involvement of Toll-like receptors (TLRs) in the therapeutic effect of vasoactive intestinal peptide (VIP), the purpose of this study is to elucidate the role of VIP as a negative regulator of TLR-signaling. To this aim, we analyzed in fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) or osteoarthritis (OA), the expression profile of TLR-pathway related molecules, as well as the alterations induced by LPS stimulation in RA-FLS and the effect of VIP treatment. Cultured FLS were obtained from patients with RA or OA. RA-FLS were next stimulated with lipopolysaccharide (LPS) in presence or absence of VIP. The gene expression profiling of molecules involved in LPS-mediated TLR4-signaling was studied by cRNA microarray analysis. Twenty three molecules involved in TLR signaling resulted over-expressed at mRNA level in basal RA-FLS compared to OA-FLS. Moreover, in RA-FLS, 23 of the analyzed genes were found to be up-regulated by LPS stimulation whereas 30 were not affected. VIP down-regulated the LPS-induced RNA expression of molecules involved in TLR signaling pathway. Up-regulation of RNA expression of CD14, MD2, TRAM, TRIF, IRAK4, TAB2, TRAF6 and TBK1 was corroborated by RT-PCR as well as the VIP regulatory effect. Increased protein levels of TRAF6, TBK1 and pIRAK1 after exposure to LPS, and the inhibitory effect of VIP, were described by Western blotting. As functional consequences, it was observed the VIP-induced impaired production of IL-6 and RANTES/CCL5 after LPS stimulation. In conclusion, VIP acts as a negative modulator of the TLR4-signaling by overturning the production of several checkpoints molecules of the cascade and thus, widening its potential therapeutic effects.


Neuroimmunomodulation | 2007

Vasoactive Intestinal Peptide Regulates Th17 Function in Autoimmune Inflammation

Javier Leceta; Rosa P. Gomariz; Carmen Martinez; Mar Carrión; Alicia Arranz; Yasmina Juarranz

An imbalance of pro-inflammatory and anti-inflammatory cytokines, autoreactive and inflammatory T helper 1 (Th1) cells, and regulatory T (Treg) cells results in the loss of immune tolerance and the subsequent appearance of inflammatory autoimmune diseases. On the other hand, hormones and neuropeptides are endogenous factors controlling the immune homeostasis that have been proposed as therapeutic agents in different autoimmune disorders. Among them, the vasoactive intestinal peptide (VIP) has been shown to downregulate the inflammatory response and to alter the Th1/Th2 balance in favor of anti-inflammatory Th2 immune responses. Recent studies have revealed a greater diversification of the T cell effector repertoire with the identification of Th17 cells. This subpopulation has been shown to be pathogenic in several autoimmune diseases previously attributed to the Th1 lineage. Arising new data and a critical revision of already published studies indicate that VIP is an immunomodulatory therapeutic agent targeting the Th17/Treg pathway.


Current Pharmaceutical Design | 2010

Peptides Targeting Toll-Like Receptor Signalling Pathways for Novel Immune Therapeutics

Rosa P. Gomariz; Irene Gutiérrez-Cañas; Alicia Arranz; Mar Carrión; Yasmina Juarranz; Javier Leceta; Carmen Martinez

Toll-like receptors (TLRs) are a family of key proteins that permit mammals to detect microbes and endogenous molecules, which are present in body fluids, cell membranes and cytoplasm. They confer mechanisms to the host for maintaining homeostasis, activating innate immunity and inducing signals that lead to the activation of adaptive immunity. TLR signalling induces the expression of pro-inflammatory and anti-viral genes through different and intricate pathways. However, persistent signalling can be dangerous and all members of the TLR family are involved in the pathogenesis of acute and chronic inflammation, autoimmunity, allergy, cancer and aging. The pharmaceutical industry has begun intensive work developing novel immunotherapeutic approaches based on both activation and inhibition of TLR triggering. Further, clinical trials are pending to evaluate TLR agonists as novel vaccine adjuvants and for the treatment of infectious diseases, allergic diseases and asthma. Since systemic, metabolic and neuroendocrine changes are elicited by inflammation, TLR activity is susceptible of regulation by hormones and neuroendocrine factors. Neuroendocrine mediators are important players in modulating different phases of TLR regulation contributing to the endogenous control of homeostasis through local, regional and systemic routes. Vasoactive intestinal peptide (VIP) is an important signal molecule of the neuroendocrine-immune network that has recently emerged as a potential candidate for the treatment of inflammatory and autoimmune disorders by controlling innate and adaptive immunity. This review shows current advances in the understanding of TLR modulation by VIP that could contribute to the use of this natural peptide as a therapeutic tool.


Immunology and Cell Biology | 2012

Effect of VIP on the balance between cytokines and master regulators of activated helper T cells

Rebeca Jimeno; Javier Leceta; Carmen Martinez; Irene Gutiérrez-Cañas; Selene Pérez-García; Mar Carrión; Rosa P. Gomariz; Yasmina Juarranz

CD4T helper cells are decisive in the struggle against pathogens and in maintaining immune homeostasis. Nevertheless, they also drive immune‐mediated disease. Recently, emerging evidence suggests that seemingly committed Th cells possess plasticity and may convert into other types of effector cells. Vasoactive Intestinal Peptide (VIP) is an immunomodulator neuropeptide, which is able to promote or inhibit individually the differentiation or function of some T‐helper subsets. We conducted ex vivo study with erythrocyte‐depleted spleen cells from healthy mice to check the balance between cytokines and master regulators of different T‐helper subsets. This neuropeptide adversely affected the differentiation and functionality phases of Th17 cells and had a negative influence on cytokines related to Th1 function, increasing Th17 cells over those of the Th1 cell subset. With respect to Th2 subsets, VIP augmented the interleukin (IL)‐4/IL‐9 mRNA ratio, and a negative correlation between IL‐4 and IL‐9 was observed in culture supernatants. VIP augmented Th2 relative to Th1 in cell subsets. VIP decreased the iTreg/Th17 balance. Regarding the induced T‐regulatory (iTreg)/Th1 balance, VIP increased the presence of immunoregulatory cytokines in relation to IFNγ. Although additional studies are needed to clarify the role of VIP on the balance between cytokines and master regulators during T‐helper differentiation, our data show that VIP reduces Th17/Th1 and Th1/Th2 ratios. However, the iTreg/Th17 ratio was differently counterbalanced, probably because of culture conditions. Finally, this is the first study showing that VIP also modulates Th2/Th9 and iTreg/Th1 ratios.


Journal of Molecular Neuroscience | 2014

VIP Modulates IL-22R1 Expression and Prevents the Contribution of Rheumatoid Synovial Fibroblasts to IL-22-Mediated Joint Destruction

Mar Carrión; Yasmina Juarranz; Iria V. Seoane; Carmen Martinez; Isidoro González-Álvaro; José L. Pablos; Irene Gutiérrez-Cañas; Rosa P. Gomariz

Rheumatoid arthritis (RA) and osteoarthritis are two rheumatic diseases whose progression is associated with a chronic synovitis. Fibroblast-like synoviocytes (FLS) have been shown to play a pivotal role in initiating and perpetuating inflammatory and destructive processes in the rheumatoid joint. Recently, the stimulating role of IL-22 has been reported on RA-FLS contribution to joint destruction by means of the increase of proliferation and matrix-metalloproteinase-1 (MMP-1) and alarmin S100A8/A9 production. Besides, mediators potentially present in inflamed joints have been shown to increase the expression of IL-22/IL-22R1 axis, amplifying the capacity of FLS to respond to IL-22 signalling. Since targeting cytokines that govern FLS activation would allow controlling their contribution to synovial inflammation, the present study was designed to analyze the potential immunoregulatory capacity of vasoactive intestinal peptide (VIP) to counterbalance IL-22 effects on FLS behavior. Our results showed that VIP is able to downregulate the augmented expression of IL-22 specific receptor in FLS subjected to a proinflammatory milieu. Moreover, this study revealed the ability of VIP to inhibit the IL-22 stimulatory effects on proliferation as well as on expression of both MMP-1 and alarmins in RA-FLS. The present findings reinforce the potential of this neuroimmunopeptide as a therapeutic agent in rheumatic diseases.


Neuroimmunomodulation | 2013

Inflammatory Mediators Alter Interleukin-17 Receptor, Interleukin-12 and -23 Expression in Human Osteoarthritic and Rheumatoid Arthritis Synovial Fibroblasts: Immunomodulation by Vasoactive Intestinal Peptide

Mar Carrión; Selene Pérez-García; Rebeca Jimeno; Yasmina Juarranz; Isidoro González-Álvaro; José L. Pablos; Irene Gutiérrez-Cañas; Rosa P. Gomariz

Aims: To assess the contribution of fibroblast-like synoviocytes (FLS) to the inflammatory joint microenvironment under different pathogenic stimuli and their potential to respond to interleukin (IL)-17 and to determine whether the neuroimmunomodulatory vasoactive intestinal peptide (VIP) is able to modulate IL-17 receptor (IL-17R) and related cytokines. Methods: The effect of proinflammatory cytokines [tumor necrosis factor α (TNFα) and IL-17] and Toll-like receptor (TLR) ligands [poly(I:C) and lipopolysaccharide (LPS)] on IL-17R expression and IL-12 and IL-23 production was studied in osteoarthritis (OA)- and rheumatoid arthritis (RA)-FLS, involved in Th1/Th17 differentiation. The effect of VIP was also determined. IL-17RA, IL-17RC, IL-12p35 and IL-23p19 expression was measured by real-time polymerase chain reaction. IL-12 and IL-23 protein levels were measured by ELISA in supernatant cultures. Results: TNFα, LPS and poly(I:C) induced an increase in IL-17RA in RA-FLS, whereas TNFα, TNFα plus IL-17 and poly(I:C) enhanced IL-17RC transcripts in FLS. VIP diminished the upregulated expression of IL-17RA in RA-FLS following TNFα and poly(I:C). TNFα, LPS and poly(I:C) increased IL-12 and IL-23 levels in cells derived from patients presenting both pathologies. However, IL-17A decreased IL-12 and augmented IL-23. VIP decreased IL-12p35 mRNA upregulation by poly(I:C) and IL-23p19 transcripts in LPS-treated FLS. Conclusions: Inflammatory cytokines and TLR ligands modulate IL-17R, IL-12 and IL-23 possibly favoring the cross talk between FLS and Th1/Th17 cells. The ability of VIP to counteract the enhancing effect of proinflammatory molecules on IL-17R and the IL-12 family of cytokines corroborates and amplifies the beneficial effect of this endogenous neuroimmunopeptide in rheumatic diseases.


Journal of Molecular Medicine | 2015

The pathogenic Th profile of human activated memory Th cells in early rheumatoid arthritis can be modulated by VIP.

Rebeca Jimeno; Rosa P. Gomariz; Marina I. Garin; Irene Gutiérrez-Cañas; Isidoro González-Álvaro; Mar Carrión; María Galindo; Javier Leceta; Yasmina Juarranz

Our aim is to study the behavior of memory Th cells (Th17, Th17/1, and Th1 profiles) from early rheumatoid arthritis (eRA) patients after their in vitro activation/expansion to provide information about its contribution to RA chronicity. Moreover, we analyzed the potential involvement of vasoactive intestinal peptide (VIP) as an endogenous healing mediator. CD4+CD45RO+ T cells from PBMCs of HD and eRA were activated/expanded in vitro in the presence/absence of VIP. FACS, ELISA, RT-PCR, and immunocytochemistry analyses were performed. An increase in CCR6+/RORC+ cells and in RORC-proliferating cells and a decrease in T-bet-proliferating cells and T-bet+/RORC+ cells were shown in eRA. mRNA expression of IL-17, IL-2, RORC, RORA, STAT3, and Tbx21 and protein secretion of IL-17, IFNγ, and GM-CSF were higher in eRA. VIP decreased the mRNA expression of IL-22, IL-2, STAT3, Tbx21, IL-12Rβ2, IL-23R, and IL-21R in HD and it decreased IL-21, IL-2, and STAT3 in eRA. VIP decreased IL-22 and GM-CSF secretion and increased IL-9 secretion in HD and it decreased IL-21 secretion in eRA. VPAC2/VPAC1 ratio expression was increased in eRA. All in all, memory Th cells from eRA patients show a greater proportion of Th17 cells with a pathogenic Th17 and Th17/1 profile compared to HD. VIP is able to modulate the pathogenic profile, mostly in HD. Our results are promising for therapy in the early stages of RA because they suggest that targeting molecules involved in the pathogenic Th17, Th17/1, and Th1 phenotypes and targeting VIP receptors could have a therapeutic effect modulating these subsets.Key messagesTh17 cells are more important than Th1 in the contribution to pathogenesis in eRA patients.Pathogenic Th17 and Th17/1 profile are abundant in activated/expanded memory Th cells from eRA patients.VIP decreases the pathogenic Th17, Th1, and Th17/1 profiles, mainly in healthy donors.The expression of VIP receptors is reduced in eRA patients respect to healthy donors, whereas the ratio of VPAC2/VPAC1 expression is higher.

Collaboration


Dive into the Mar Carrión's collaboration.

Top Co-Authors

Avatar

Rosa P. Gomariz

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Yasmina Juarranz

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Irene Gutiérrez-Cañas

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Carmen Martinez

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Selene Pérez-García

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

José L. Pablos

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebeca Jimeno

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Javier Leceta

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Alicia Arranz

Complutense University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge