Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mar Coll is active.

Publication


Featured researches published by Mar Coll.


Hepatology | 2012

Liver progenitor cell markers correlate with liver damage and predict short-term mortality in patients with alcoholic hepatitis.

Pau Sancho-Bru; José Altamirano; Daniel Rodrigo-Torres; Mar Coll; Cristina Millán; Juan José Lozano; Rosa Miquel; Vicente Arroyo; Juan Caballería; Pere Ginès; Ramon Bataller

Alcoholic hepatitis (AH) is a severe condition developed in patients with underlying alcoholic liver disease. Ductular reaction has been associated with chronic alcohol consumption but there is no information regarding the extent of liver progenitor cell (LPC) proliferation in AH. The aim of this study was to investigate LPC markers in AH and its correlation with disease severity. Fifty‐nine patients with clinical and histological diagnosis of AH were included in the study. LPC markers were assessed by real‐time polymerase chain reaction (PCR) and immunohistochemistry. Standard logistic regression analysis and classification and regression trees (CART) analysis were used for statistical analysis. A microarray analysis showed an up‐regulation of LPC markers in patients with AH. Real‐time PCR demonstrated that epithelial cell adhesion molecule (EpCAM), Prominin‐1, and Keratin7 were significantly increased in patients with AH compared with normal livers (P ≤ 0.01), chronic hepatitis C (P ≤ 0.01), and HCV‐induced cirrhosis (P ≤ 0.01). Immunohistochemistry scores generated for Keratin7 and EpCAM demonstrated a good correlation with gene expression. Keratin7 gene expression correlated with liver failure as assessed by model for endstage liver disease score (r = 0.41, P = 0.006) and Maddreys discriminant function (r = 0.43, P = 0.004). Moreover, Keratin7 (OR1.14, P = 0.004) and Prominin‐1 (OR1.14, P = 0.002), but not EpCAM (OR1.16, P = 0.06), were identified as independent predictors of 90‐day mortality. CART analysis generated an algorithm based on the combination of Keratin7 and EpCAM gene expression that stratified three groups of patients with high, intermediate, and low short‐term mortality (89%, 33%, and 6%, respectively; area under the receiver operating curve 0.73, 95% confidence interval 0.60‐0.87). Keratin7 expression provided additional discrimination potential to the age, bilirubin, international normalization ratio, creatinine (ABIC) score. Conclusion: LPC markers correlate positively with severity of liver disease and short‐term mortality in AH patients. This study suggests that LPC proliferation may be an important feature of AH pathophysiology. (HEPATOLOGY 2012;55:1931–1941)


Hepatology | 2014

The biliary epithelium gives rise to liver progenitor cells

Daniel Rodrigo-Torres; Silvia Affò; Mar Coll; O. Morales-Ibanez; Cristina Millán; Delia Blaya; Anna Alvarez-Guaita; Carles Rentero; Juan José Lozano; Miguel Angel Maestro; Myriam Solar; Vicente Arroyo; Joan Caballería; Leo A. van Grunsven; Carlos Enrich; Pere Ginès; Ramon Bataller; P. Sancho-Bru

Severe liver diseases are characterized by expansion of liver progenitor cells (LPC), which correlates with disease severity. However, the origin and role of LPC in liver physiology and in hepatic injury remains a contentious topic. We found that ductular reaction cells in human cirrhotic livers express hepatocyte nuclear factor 1 homeobox B (HNF1β). However, HNF1β expression was not present in newly generated epithelial cell adhesion molecule (EpCAM)‐positive hepatocytes. In order to investigate the role of HNF1β‐expressing cells we used a tamoxifen‐inducible Hnf1βCreER/R26RYfp/LacZ mouse to lineage‐trace Hnf1β+ biliary duct cells and to assess their contribution to LPC expansion and hepatocyte generation. Lineage tracing demonstrated no contribution of HNF1β+ cells to hepatocytes during liver homeostasis in healthy mice or after loss of liver mass. After acute acetaminophen or carbon tetrachloride injury no contribution of HNF1β+ cells to hepatocyte was detected. We next assessed the contribution of Hnf1β+‐derived cells following two liver injury models with LPC expansion, a diethoxycarbonyl‐1,4‐dihydro‐collidin (DDC)‐diet and a choline‐deficient ethionine‐supplemented (CDE)‐diet. The contribution of Hnf1β+ cells to liver regeneration was dependent on the liver injury model. While no contribution was observed after DDC‐diet treatment, mice fed with a CDE‐diet showed a small population of hepatocytes derived from Hnf1β+ cells that were expanded to 1.86% of total hepatocytes after injury recovery. Genome‐wide expression profile of Hnf1β+‐derived cells from the DDC and CDE models indicated that no contribution of LPC to hepatocytes was associated with LPC expression of genes related to telomere maintenance, inflammation, and chemokine signaling pathways. Conclusion: HNF1β+ biliary duct cells are the origin of LPC. HNF1β+ cells do not contribute to hepatocyte turnover in the healthy liver, but after certain liver injury, they can differentiate to hepatocytes contributing to liver regeneration. (Hepatology 2014;60:1367–1377)


Gut | 2014

CCL20 mediates lipopolysaccharide induced liver injury and is a potential driver of inflammation and fibrosis in alcoholic hepatitis

Silvia Affò; O. Morales-Ibanez; Daniel Rodrigo-Torres; José Altamirano; Delia Blaya; Cristina Millán; Mar Coll; Jorge Matias Caviglia; Vicente Arroyo; Juan Caballería; Robert F. Schwabe; Pere Ginès; Ramon Bataller; P. Sancho-Bru

Objective Chemokines are known to play an important role in the pathophysiology of alcoholic hepatitis (AH), a form of acute-on-chronic liver injury frequently mediated by gut derived lipopolysaccharide (LPS). In our study, we hypothesise that chemokine CCL20, one of the most upregulated chemokines in patients with AH, is implicated in the pathogenesis of AH by mediating LPS induced liver injury. Design CCL20 gene expression and serum levels and their correlation with disease severity were assessed in patients with AH. Cellular sources of CCL20 and its biological effects were evaluated in vitro and in vivo in chronic, acute and acute-on-chronic experimental models of carbon tetrachloride and LPS induced liver injury. RNA interference technology was used to knockdown CCL20 in vivo. Results CCL20 hepatic and serum levels were increased in patients with AH and correlated with the degree of fibrosis, portal hypertension, endotoxaemia, disease severity scores and short term mortality. Moreover, CCL20 expression was increased in animal models of liver injury and particularly under acute-on-chronic conditions. Macrophages and hepatic stellate cells (HSCs) were identified as the main CCL20 producing cell types. Silencing CCL20 in vivo reduced LPS induced aspartate aminotransferase and lactate dehydrogenase serum levels and hepatic proinflammatory and profibrogenic genes. CCL20 induced proinflammatory and profibrogenic effects in cultured primary HSCs. Conclusions Our results suggest that CCL20 upregulation is strongly associated with LPS and may not only represent a new potential biomarker to predict outcome in patients with AH but also an important mediator linking hepatic inflammation, injury and fibrosis in AH.


World Journal of Hepatology | 2010

Physiopathology of splanchnic vasodilation in portal hypertension

María Martell; Mar Coll; Nahia Ezkurdia; Imma Raurell; Joan Genescà

In liver cirrhosis, the circulatory hemodynamic alterations of portal hypertension significantly contribute to many of the clinical manifestations of the disease. In the physiopathology of this vascular alteration, mesenteric splanchnic vasodilation plays an essential role by initiating the hemodynamic process. Numerous studies performed in cirrhotic patients and animal models have shown that this splanchnic vasodilation is the result of an important increase in local and systemic vasodilators and the presence of a splanchnic vascular hyporesponsiveness to vasoconstrictors. Among the molecules and factors known to be potentially involved in this arterial vasodilation, nitric oxide seems to have a crucial role in the physiopathology of this vascular alteration. However, none of the wide variety of mediators can be described as solely responsible, since this phenomenon is multifactorial in origin. Moreover, angiogenesis and vascular remodeling processes also seem to play a role. Finally, the sympathetic nervous system is thought to be involved in the pathogenesis of the hyperdynamic circulation associated with portal hypertension, although the nature and extent of its role is not completely understood. In this review, we discuss the different mechanisms known to contribute to this complex phenomenon.


Scientific Reports | 2015

Integrative miRNA and Gene Expression Profiling Analysis of Human Quiescent Hepatic Stellate Cells

Mar Coll; Adil El Taghdouini; L. Perea; Inge Mannaerts; Maria Vila-Casadesús; Delia Blaya; Daniel Rodrigo-Torres; Silvia Affò; O. Morales-Ibanez; Isabel Graupera; Juan José Lozano; Mustapha Najimi; Etienne Sokal; Joeri Lambrecht; Pere Ginès; Leo A. van Grunsven; Pau Sancho-Bru

Unveiling the regulatory pathways maintaining hepatic stellate cells (HSC) in a quiescent (q) phenotype is essential to develop new therapeutic strategies to treat fibrogenic diseases. To uncover the miRNA-mRNA regulatory interactions in qHSCs, HSCs were FACS-sorted from healthy livers and activated HSCs (aHSCs) were generated in vitro. MiRNA Taqman array analysis showed HSCs expressed a low number of miRNAs (n = 259), from which 47 were down-regulated and 212 up-regulated upon activation. Computational integration of miRNA and gene expression profiles revealed that 66% of qHSC-associated miRNAs correlated with more than 6 altered target mRNAs (17,28 ± 10,7 targets/miRNA) whereas aHSC-associated miRNAs had an average of 1,49 targeted genes. Interestingly, interaction networks generated by miRNA-targeted genes in qHSCs were associated with key HSC activation processes. Next, selected miRNAs were validated in healthy and cirrhotic human livers and miR-192 was chosen for functional analysis. Down-regulation of miR-192 in HSCs was found to be an early event during fibrosis progression in mouse models of liver injury. Moreover, mimic assays for miR-192 in HSCs revealed its role in HSC activation, proliferation and migration. Together, these results uncover the importance of miRNAs in the maintenance of the qHSC phenotype and form the basis for understanding the regulatory networks in HSCs.


Journal of Hepatology | 2008

Down-regulation of genes related to the adrenergic system may contribute to splanchnic vasodilation in rat portal hypertension☆

Mar Coll; Joan Genescà; Imma Raurell; Aina Rodríguez-Vilarrupla; Marc Mejias; Teresa Otero; Marc Oria; Rafael Esteban; Jaime Guardia; Jaime Bosch; María Martell

BACKGROUND/AIMS Splanchnic vasodilation initiates the hyperdynamic syndrome in portal hypertension. We aimed to explore molecular mechanisms involved in the development of mesenteric vasodilation in portal hypertension. METHODS Superior mesenteric artery (SMA) samples from portal vein ligated (PVL) and sham rats were compared in a time course experiment using DNA microarrays. Selected genes were quantified by qRT-PCR in PVL and cirrhotic rats. Inmunohistochemistry of tyrosine hydroxylase (Th) and norepinephrine was assessed in SMA sections of PVL and sham rats. Western blot analysis of Th, dopamine beta-hydroxylase (Dbh) and synaptosome-associated protein (Snap-25) was performed in SMA and jejunum samples from the animal models. RESULTS Fifty differentially expressed genes implicated in neurotransmission, especially adrenergic, were detected in SMA samples from PVL rats. Sequential analysis showed a profound down-regulation at 14 days in PVL rats. These down-regulated genes were confirmed by RT-PCR in SMA from PVL and cirrhotic rats. Th and NE detection by immunohistochemistry was reduced in PVL compared to sham. Th, Dbh and Snap-25 expression was lower in SMA from 14-day PVL and cirrhotic rats compared to sham and control rats, respectively. CONCLUSIONS Genetic down-regulation of genes related to the adrenergic system might have a role in splanchnic vasodilation of portal hypertension.


Journal of Hepatology | 2016

Neutrophil gelatinase-associated lipocalin is a biomarker of acute-on-chronic liver failure and prognosis in cirrhosis

Xavier Ariza; Isabel Graupera; Mar Coll; Elsa Solà; Rogelio Barreto; Elisabet Garcia; Rebeca Moreira; Chiara Elia; M. Morales-Ruiz; M. Llopis; P. Huelin; Cristina Solé; Núria Fabrellas; E. Weiss; Frederik Nevens; Alexander L. Gerbes; Jonel Trebicka; Faouzi Saliba; Constantino Fondevila; V. Hernández-Gea; Javier Fernández; Mauro Bernardi; V. Arroyo; Wladimiro Jiménez; C. Deulofeu; Marco Pavesi; Paolo Angeli; Rajiv Jalan; Richard Moreau; P. Sancho-Bru

BACKGROUND & AIMS Acute-on-chronic liver failure (ACLF) is a syndrome that occurs in cirrhosis characterized by organ failure(s) and high mortality rate. There are no biomarkers of ACLF. The LCN2 gene and its product, neutrophil gelatinase-associated lipocalin (NGAL), are upregulated in experimental models of liver injury and cultured hepatocytes as a result of injury by toxins or proinflammatory cytokines, particularly Interleukin-6. The aim of this study was to investigate whether NGAL could be a biomarker of ACLF and whether LCN2 gene may be upregulated in the liver in ACLF. METHODS We analyzed urine and plasma NGAL levels in 716 patients hospitalized for complications of cirrhosis, 148 with ACLF. LCN2 expression was assessed in liver biopsies from 29 additional patients with decompensated cirrhosis with and without ACLF. RESULTS Urine NGAL was markedly increased in ACLF vs. no ACLF patients (108(35-400) vs. 29(12-73)μg/g creatinine; p<0.001) and was an independent predictive factor of ACLF; the independent association persisted after adjustment for kidney function or exclusion of variables present in ACLF definition. Urine NGAL was also an independent predictive factor of 28day transplant-free mortality together with MELD score and leukocyte count (AUROC 0.88(0.83-0.92)). Urine NGAL improved significantly the accuracy of MELD in predicting prognosis. The LCN2 gene was markedly upregulated in the liver of patients with ACLF. Gene expression correlated directly with serum bilirubin and INR (r=0.79; p<0.001 and r=0.67; p<0.001), MELD (r=0.68; p<0.001) and Interleukin-6 (r=0.65; p<0.001). CONCLUSIONS NGAL is a biomarker of ACLF and prognosis and correlates with liver failure and systemic inflammation. There is remarkable overexpression of LCN2 gene in the liver in ACLF syndrome. LAY SUMMARY Urine NGAL is a biomarker of acute-on-chronic liver failure (ACLF). NGAL is a protein that may be expressed in several tissues in response to injury. The protein is filtered by the kidneys due to its small size and can be measured in the urine. Ariza, Graupera and colleagues found in a series of 716 patients with cirrhosis that urine NGAL was markedly increased in patients with ACLF and correlated with prognosis. Moreover, gene coding NGAL was markedly overexpressed in the liver tissue in ACLF.


Oncotarget | 2015

Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells

Adil El Taghdouini; Anita L. Sørensen; Andrew H. Reiner; Mar Coll; Stefaan Verhulst; Inge Mannaerts; Cristina Ionica Øie; Bård Smedsrød; Mustapha Najimi; Etienne Sokal; Aernout Luttun; Pau Sancho-Bru; Philippe Collas; Leo A. van Grunsven

Background & Aims Liver fibrogenesis – scarring of the liver that can lead to cirrhosis and liver cancer – is characterized by hepatocyte impairment, capillarization of liver sinusoidal endothelial cells (LSECs) and hepatic stellate cell (HSC) activation. To date, the molecular determinants of a healthy human liver cell phenotype remain largely uncharacterized. Here, we assess the transcriptome and the genome-wide promoter methylome specific for purified, non-cultured human hepatocytes, LSECs and HSCs, and investigate the nature of epigenetic changes accompanying transcriptional changes associated with activation of HSCs. Material and methods Gene expression profile and promoter methylome of purified, uncultured human liver cells and culture-activated HSCs were respectively determined using Affymetrix HG-U219 genechips and by methylated DNA immunoprecipitation coupled to promoter array hybridization. Histone modification patterns were assessed at the single-gene level by chromatin immunoprecipitation and quantitative PCR. Results We unveil a DNA-methylation-based epigenetic relationship between hepatocytes, LSECs and HSCs despite their distinct ontogeny. We show that liver cell type-specific DNA methylation targets early developmental and differentiation-associated functions. Integrative analysis of promoter methylome and transcriptome reveals partial concordance between DNA methylation and transcriptional changes associated with human HSC activation. Further, we identify concordant histone methylation and acetylation changes in the promoter and putative novel enhancer elements of genes involved in liver fibrosis. Conclusions Our study provides the first epigenetic blueprint of three distinct freshly isolated, human hepatic cell types and of epigenetic changes elicited upon HSC activation.


Liver International | 2010

Atrophy of mesenteric sympathetic innervation may contribute to splanchnic vasodilation in rat portal hypertension

Mar Coll; María Martell; Imma Raurell; Nahia Ezkurdia; Silvia Cuenca; Javier Hernández-Losa; Rafael Esteban; J. Guardia; Jaume Bosch; Joan Genescà

Background and aims: Portal hypertension is associated with downregulation of mRNA and proteins involved in adrenergic transmission in the superior mesenteric artery (SMA) in portal vein‐ligated (PVL) and cirrhotic rats. We aimed to investigate whether SMA adrenergic dysfunction was accompanied by sympathetic nerve structural changes and whether it was extensive to resistance mesenteric arteries. We also attempted to localize the origin of mRNA of specific adrenergic genes.


Gut | 2016

Integrative microRNA profiling in alcoholic hepatitis reveals a role for microRNA-182 in liver injury and inflammation

Delia Blaya; Mar Coll; Daniel Rodrigo-Torres; Maria Vila-Casadesús; José Altamirano; M. Llopis; Isabel Graupera; L. Perea; Beatriz Aguilar-Bravo; Alba Díaz; Jesus M. Banales; Joan Clària; Juan José Lozano; Ramon Bataller; Juan Caballería; Pere Ginès; Pau Sancho-Bru

Objective MicroRNAs (miRNAs) are well-known regulators of disease pathogenesis and have great potential as biomarkers and therapeutic targets. We aimed at profiling miRNAs in alcoholic hepatitis (AH) and identifying miRNAs potentially involved in liver injury. Design MiRNA profiling was performed in liver samples from patients with AH, alcohol liver disease, non-alcoholic steatohepatitis, HCV disease and normal liver tissue. Expression of miRNAs was assessed in liver and serum from patients with AH and animal models. Mimic and decoy miR-182 were used in vitro and in vivo to evaluate miR-182s biological functions. Results MiRNA expression profile in liver was highly altered in AH and distinctive from alcohol-induced cirrhotic livers. Moreover, we identified a set of 18 miRNAs predominantly expressed in AH as compared with other chronic liver conditions. Integrative miRNA-mRNA functional analysis revealed the association of AH-altered miRNAs with nuclear receptors, IGF-1 signalling and cholestasis. Interestingly, miR-182 was the most highly expressed miRNA in AH, which correlated with degree of ductular reaction, disease severity and short-term mortality. MiR-182 mimic induced an upregulation of inflammatory mediators in biliary cells. At experimental level, miR-182 was increased in biliary cells in mice fed with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet but not upregulated by alcohol intake or fibrosis. Inhibition of miR-182 in DDC-fed mice reduced liver damage, bile acid accumulation and inflammatory response. Conclusions AH is characterised by a deregulated miRNA profile, including miR-182, which is associated with disease severity and liver injury. These results highlight the potential of miRNAs as therapeutic targets and biomarkers in AH.

Collaboration


Dive into the Mar Coll's collaboration.

Top Co-Authors

Avatar

Delia Blaya

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Perea

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pere Ginès

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Ginès

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge