Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mar Viana is active.

Publication


Featured researches published by Mar Viana.


Epidemiology | 2008

Coarse particles from Saharan dust and daily mortality.

Laura Perez; Aurelio Tobías; Xavier Querol; Nino Künzli; Jorge Pey; Andrés Alastuey; Mar Viana; Natalia Valero; Manuel González-Cabré; Jordi Sunyer

Background: Winds from the Sahara-Sahel desert region regularly transport large amounts of dust to the Americas, North Africa, and Europe. The presence of high dust concentrations for long periods of time, and the interaction between dust and man-made air pollution, raise concerns about adverse health effects and appropriate interventions by health authorities. This study tested the hypothesis that outbreaks of Saharan dust exacerbate the effects of man-made pollution, specifically fine and coarse particulate matter (PM2.5 and PM10-2.5, respectively) on daily mortality. Methods: We investigated the effects of exposure to PM10-2.5 and PM2.5 between March 2003 and December 2004 in Barcelona (Spain) on daily mortality; changes of effects between Saharan and non-Saharan dust days were assessed using a time-stratified case-crossover design. We studied the chemical composition of particulate matter to explain changes of effects. Results: The study included 24,850 deaths. During Saharan dust days, a daily increase of 10 &mgr;g/m3 of PM10-2.5 increased daily mortality by 8.4% (95% confidence interval = 1.5%–15.8%) compared with 1.4% (−0.8% to 3.4%) during non-Saharan dust days (P value for interaction = 0.05). In contrast, there was no increased risk of daily mortality for PM2.5 during Saharan dust days. Although coarse particles seem to be more hazardous during Saharan dust days, differences in chemical composition did not explain these observations. Conclusions: Saharan dust outbreaks may have adverse health effects. Further investigation is needed to understand the role of coarse particles and the mechanism by which Saharan dust increases mortality.


Journal of Geophysical Research | 2005

Wet and dry African dust episodes over eastern Spain

M. Escudero; S. Castillo; Xavier Querol; Anna Avila; Marta Alarcón; Mar Viana; Andrés Alastuey; E. Cuevas; Sergio Rodríguez

[1] The impact of the African dust on levels of atmospheric suspended particulate matter (SPM) and on wet deposition was evaluated in eastern Iberia for the period 1996–2002. An effort was made to compile both the SPM and wet episodes. To this end, the time series of levels of TSP and PM10 in Levantine air quality monitoring stations were evaluated and complemented with the computation of back trajectories, satellite images, and meteorological analysis. Wet deposition frequency was obtained from weekly collected precipitation data at a rural background station in which the African chemical signature was identified (mainly pH and Ca 2+ concentrations). A number of African dust episodes (112) were identified (16 episodes per year). In 93 out of the 112 (13 episodes per year) the African dust influence caused high SPM levels. In 49 out of 112 (7 episodes per year), wet deposition was detected, and the chemistry was influenced by dust. There is a clear seasonal trend with higher frequency of dust outbreaks in May-August, with second modes in March and October. Wet events followed a different pattern, with a marked maximum in May. Except for one event, December was devoid of African air mass intrusions. On the basis of seasonal meteorological patterns affecting the Iberian Peninsula, an interpretation of the meteorological scenarios causing African dust transport over Iberia was carried out. Four scenarios were identified with a clear seasonal trend. The impact of the different dust outbreak scenarios on the levels of PM10 recorded at a rural site (Monagrega, Teruel, Spain) in the period 1996–2002 was also evaluated.


Atmospheric Environment | 2002

Influence of African dust on the levels of atmospheric particulates in the Canary Islands air quality network

Mar Viana; Xavier Querol; Andrés Alastuey; E. Cuevas; Sergio Rodríguez

Abstract Time series of levels of atmospheric particulate matter (TSP and PM10) were studied at 19 air quality monitoring stations in the islands of Tenerife and Gran Canaria (Canary Islands) during the period 1998–2000. After analysing seasonal variations, attention was focused on the detection of high TSP and PM10 events and on the identification of their natural or anthropogenic origins. Back-trajectory analysis and TOMS-NASA aerosol index as well as satellite imagery (SeaWIFS-NASA) were used to identify three types of African dust outbreaks differing in seasonal occurrence, source origin and impact on TSP/PM10 levels. Mean annual and daily TSP and PM10 levels were compared with the forthcoming limit values of the EU Air Quality Directive EC/30/1999, and the results showed that the annual and daily limit values established for 2010 would only be met at rural stations. PM levels at urban background, urban and industrial sites would exceed the 2010 objectives. Only the levels at the urban-background stations would meet the requirements for 2005 despite the fact that the trade winds result in lower levels of atmospheric pollutants in the Canary Islands than in continental environments. The results highlight the role of African dust contributions when implementing the limit values of the EU directive.


Atmospheric Chemistry and Physics | 2011

Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer

Sergio Rodríguez; Andrés Alastuey; Silvia Alonso-Pérez; Xavier Querol; E. Cuevas; J. Abreu-Afonso; Mar Viana; Noemí Pérez; Marco Pandolfi; J. de la Rosa

An analysis of chemical composition data of particulate matter samples (TSP, PM 10 and PM2.5) collected from 2002 to 2008 in the North Atlantic free troposphere at the Izãna Global Atmospheric Watch (GAW) observatory (Tenerife, Canary Islands) shows that desert dust is very frequently mixed with particulate pollutants in the Saharan Air Layer (SAL). The study of this data set with Median Concentrations At Receptor (MCAR) plots allowed the identification of the potential source regions of the dust and particulate pollutants. Areas located at the south of the southern slope of the Atlas mountains emerge as the most frequent source of the soil desert dust advected to the northern edge of the SAL in summer. Industrial emissions occurring in Northern Algeria, Eastern Algeria, Tunisia and the Atlantic coast of Morocco appear as the most important source of the nitrate, ammonium and a fraction of sulphate (at least 60 % of the sulphate<10 μm transported from some regions) observed in the SAL. These emissions are mostly linked to crude oil refineries, phosphate-based fertilizer industry and power plants. Although desert dust emissions appear as the most frequent source of the phosphorous observed in the SAL, high P concentrations are observed when the SAL is affected by emissions from open mines of phosphate and phosphate based fertilizer industry. The results also show that a significant fraction of the sulphate (up to 90 % of sulphate <10 μm transported from some regions) observed in the SAL may be influenced by soil emissions of evaporite minerals in well defined regions where dry saline lakes (chotts) are present. These interpretations of the MCAR plots are consistent with the results obtained with the Positive Matrix Factorization Correspondence to: S. Rodŕıguez ([email protected]) (PMF2) receptor modelling. The results of this study show that North African industrial pollutants may be mixed with desert dust and exported to the North Atlantic in the Saharan Air Layer.


Aerosol Science and Technology | 2010

Variability of Particle Number, Black Carbon, and PM10, PM2.5, and PM1 Levels and Speciation: Influence of Road Traffic Emissions on Urban Air Quality

Noemí Pérez; Jorge Pey; Michael Cusack; Cristina Reche; Xavier Querol; Andrés Alastuey; Mar Viana

Measurements of particle number concentration (N), black carbon (BC), and PM 10 , PM 2.5 , and PM 1 levels and speciation were carried out at an urban background monitoring site in Barcelona. Daily variability of all aerosol monitoring parameters was highly influenced by road traffic emissions and meteorology. The levels of N, BC, PM X , CO, NO, and NO 2 increased during traffic rush hours, reflecting exhaust, and non-exhaust traffic emissions and then decreased by the effect of breezes and the reduction of traffic intensity. PM 2.5–10 levels did not decrease during the day as a result of dust resuspension by traffic and wind. N showed a second peak, registered in the afternoon and parallel to O 3 levels and solar radiation intensity, that may be attributed to photochemical nucleation of precursor gases. An increasing trend was observed for PM 1 levels from 1999 to 2006, related to the increase in the traffic flow and the diesel fleet in Barcelona. PM composition was highly influenced by road traffic emissions, with exhaust emissions being an important source of PM 1 and dust resuspension processes of PM 2.5–10 , respectively.


PLOS Medicine | 2015

Association between traffic-related air pollution in schools and cognitive development in primary school children: a prospective cohort study.

Jordi Sunyer; Mikel Esnaola; Mar Alvarez-Pedrerol; Joan Forns; Ioar Rivas; Mónica López-Vicente; Elisabet Suades-González; Maria Foraster; Raquel Garcia-Esteban; Xavier Basagaña; Mar Viana; Marta Cirach; Teresa Moreno; Andrés Alastuey; Núria Sebastián-Gallés; Mark J. Nieuwenhuijsen; Xavier Querol

Background Air pollution is a suspected developmental neurotoxicant. Many schools are located in close proximity to busy roads, and traffic air pollution peaks when children are at school. We aimed to assess whether exposure of children in primary school to traffic-related air pollutants is associated with impaired cognitive development. Methods and Findings We conducted a prospective study of children (n = 2,715, aged 7 to 10 y) from 39 schools in Barcelona (Catalonia, Spain) exposed to high and low traffic-related air pollution, paired by school socioeconomic index; children were tested four times (i.e., to assess the 12-mo developmental trajectories) via computerized tests (n = 10,112). Chronic traffic air pollution (elemental carbon [EC], nitrogen dioxide [NO2], and ultrafine particle number [UFP; 10–700 nm]) was measured twice during 1-wk campaigns both in the courtyard (outdoor) and inside the classroom (indoor) simultaneously in each school pair. Cognitive development was assessed with the n-back and the attentional network tests, in particular, working memory (two-back detectability), superior working memory (three-back detectability), and inattentiveness (hit reaction time standard error). Linear mixed effects models were adjusted for age, sex, maternal education, socioeconomic status, and air pollution exposure at home. Children from highly polluted schools had a smaller growth in cognitive development than children from the paired lowly polluted schools, both in crude and adjusted models (e.g., 7.4% [95% CI 5.6%–8.8%] versus 11.5% [95% CI 8.9%–12.5%] improvement in working memory, p = 0.0024). Cogently, children attending schools with higher levels of EC, NO2, and UFP both indoors and outdoors experienced substantially smaller growth in all the cognitive measurements; for example, a change from the first to the fourth quartile in indoor EC reduced the gain in working memory by 13.0% (95% CI 4.2%–23.1%). Residual confounding for social class could not be discarded completely; however, the associations remained in stratified analyses (e.g., for type of school or high-/low-polluted area) and after additional adjustments (e.g., for commuting, educational quality, or smoking at home), contradicting a potential residual confounding explanation. Conclusions Children attending schools with higher traffic-related air pollution had a smaller improvement in cognitive development.


Environment International | 2014

Child exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain

Ioar Rivas; Mar Viana; Teresa Moreno; Marco Pandolfi; Fulvio Amato; Cristina Reche; Laura Bouso; Mar Alvarez-Pedrerol; Andrés Alastuey; Jordi Sunyer; Xavier Querol

Proximity to road traffic involves higher health risks because of atmospheric pollutants. In addition to outdoor air, indoor air quality contributes to overall exposure. In the framework of the BREATHE study, indoor and outdoor air pollution was assessed in 39 schools in Barcelona. The study quantifies indoor and outdoor air quality during school hours of the BREATHE schools. High levels of fine particles (PM2.5), nitrogen dioxide (NO2), equivalent black carbon (EBC), ultrafine particle (UFP) number concentration and road traffic related trace metals were detected in school playgrounds and indoor environments. PM2.5 almost doubled (factor of 1.7) the usual urban background (UB) levels reported for Barcelona owing to high school-sourced PM2.5 contributions: [1] an indoor-generated source characterised mainly by organic carbon (OC) from organic textile fibres, cooking and other organic emissions, and by calcium and strontium (chalk dust) and; [2] mineral elements from sand-filled playgrounds, detected both indoors and outdoors. The levels of mineral elements are unusually high in PM2.5 because of the breakdown of mineral particles during playground activities. Moreover, anthropogenic PM components (such as OC and arsenic) are dry/wet deposited in this mineral matter. Therefore, PM2.5 cannot be considered a good tracer of traffic emissions in schools despite being influenced by them. On the other hand, outdoor NO2, EBC, UFP, and antimony appear to be good indicators of traffic emissions. The concentrations of NO2 are 1.2 times higher at schools than UB, suggesting the proximity of some schools to road traffic. Indoor levels of these traffic-sourced pollutants are very similar to those detected outdoors, indicating easy penetration of atmospheric pollutants. Spatial variation shows higher levels of EBC, NO2, UFP and, partially, PM2.5 in schools in the centre than in the outskirts of Barcelona, highlighting the influence of traffic emissions. Mean child exposure to pollutants in schools in Barcelona attains intermediate levels between UB and traffic stations.


Science of The Total Environment | 2008

Interpretation of the variability of levels of regional background aerosols in the Western Mediterranean

Noemí Pérez; Jorge Pey; S. Castillo; Mar Viana; Andrés Alastuey; Xavier Querol

Results on interpretation of the variability of regional background PM levels in the Western Mediterranean basin (WMB) are presented. Mean PM levels recorded at Montseny, MSY (North-Eastern Spain) in the 2002--2007 period reached 17, 13 and 11 microg/m3 of PM10, PM2.5 and PM1, respectively. The daily evolution of PM levels is regulated by the breeze circulation (mountain and sea breezes). PM levels are lower at the rural sites at night owing to the nocturnal drainage flows and to the lowering of the mixing layer height below the MSY high. These nocturnal low levels allowed us to estimate the continental background PM levels. At midday, the atmospheric pollutants accumulated in the pre-coastal depression are transported upwards by the breeze, increasing PM levels. Maximum PM10 levels were recorded in summer, and February--March and November, and minimum values in the rest of the year coinciding with the highest frequency of Atlantic advection. PM peak episodes attributed to Saharan dust outbreaks were recorded in summer and February-March. In addition, anticyclonic situations (February--March and November) may impact in elevated rural areas by increasing hourly levels of PM1 up to 75 microg/m3. This scenario induces the stagnation of pollutants in the pre-coastal depression. Solar radiation activates mountain winds, transporting polluted air masses from the valleys to elevated areas resulting in an increase of fine PM levels in areas outside the boundary layer. A significant decrease in PM annual means (40% and 34% for the entire monitoring period, 7 microgPM10/m3 and 5 microgPM2.5/m3) was recorded at MSY between 2002 and 2007. There appears to be no single cause behind these trends. This could partially be ascribed to the varying frequency and intensity of Saharan dust episodes, but also to large-scale meteorological processes or cycles, and/or to local or meso-scale processes such as nearby anthropogenic emission sources.


Science of The Total Environment | 2012

Biomass burning contributions to urban aerosols in a coastal Mediterranean City

Cristina Reche; Mar Viana; Fulvio Amato; Andrés Alastuey; Teresa Moreno; R. Hillamo; Kimmo Teinilä; Karri Saarnio; Roger Seco; Josep Peñuelas; Claudia Mohr; André S. H. Prévôt; Xavier Querol

Mean annual biomass burning contributions to the bulk particulate matter (PM(X)) load were quantified in a southern-European urban environment (Barcelona, Spain) with special attention to typical Mediterranean winter and summer conditions. In spite of the complexity of the local air pollution cocktail and the expected low contribution of biomass burning emissions to PM levels in Southern Europe, the impact of these emissions was detected at an urban background site by means of tracers such as levoglucosan, K(+) and organic carbon (OC). The significant correlation between levoglucosan and OC (r(2)=0.77) and K(+) (r(2)=0.65), as well as a marked day/night variability of the levoglucosan levels and levoglucosan/OC ratios was indicative of the contribution from regional scale biomass burning emissions during night-time transported by land breezes. In addition, on specific days (21-22 March), the contribution from long-range transported biomass burning aerosols was detected. Quantification of the contribution of biomass burning aerosols to PM levels on an annual basis was possible by means of the Multilinear Engine (ME). Biomass burning emissions accounted for 3% of PM(10) and PM(2.5) (annual mean), while this percentage increased up to 5% of PM(1). During the winter period, regional-scale biomass burning emissions (agricultural waste burning) were estimated to contribute with 7±4% of PM(2.5) aerosols during night-time (period when emissions were clearly detected). Long-range transported biomass burning aerosols (possibly from forest fires and/or agricultural waste burning) accounted for 5±2% of PM(2.5) during specific episodes. Annually, biomass burning emissions accounted for 19%-21% of OC levels in PM(10), PM(2.5) and PM(1). The contribution of this source to K(+) ranged between 48% for PM(10) and 97% for PM(1) (annual mean). Results for K(+) from biomass burning evidenced that this tracer is mostly emitted in the fine fraction, and thus coarse K(+) could not be taken as an appropriate tracer of biomass burning.


Environment International | 2012

Health effects from Sahara dust episodes in Europe: literature review and research gaps.

Angeliki Karanasiou; Natalia Moreno; Teresa Moreno; Mar Viana; F. de Leeuw; Xavier Querol

The adverse consequences of particulate matter (PM) on human health have been well documented. Recently, special attention has been given to mineral dust particles, which may be a serious health threat. The main global source of atmospheric mineral dust is the Sahara desert, which produces about half of the annual mineral dust. Sahara dust transport can lead to PM levels that substantially exceed the established limit values. A review was undertaken using the ISI web of knowledge database with the objective to identify all studies presenting results on the potential health impact from Sahara dust particles. The review of the literature shows that the association of fine particles, PM₂.₅, with total or cause-specific daily mortality is not significant during Saharan dust intrusions. However, regarding coarser fractions PM₁₀ and PM₂.₅₋₁₀ an explicit answer cannot be given. Some of the published studies state that they increase mortality during Sahara dust days while other studies find no association between mortality and PM₁₀ or PM₂.₅₋₁₀. The main conclusion of this review is that health impact of Saharan dust outbreaks needs to be further explored. Considering the diverse outcomes for PM₁₀ and PM₂.₅₋₁₀, future studies should focus on the chemical characterization and potential toxicity of coarse particles transported from Sahara desert mixed or not with anthropogenic pollutants. The results of this review may be considered to establish the objectives and strategies of a new European directive on ambient air quality. An implication for public policy in Europe is that to protect public health, anthropogenic sources of particulate pollution need to be more rigorously controlled in areas highly impacted by the Sahara dust.

Collaboration


Dive into the Mar Viana's collaboration.

Top Co-Authors

Avatar

Xavier Querol

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Andrés Alastuey

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Teresa Moreno

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Cristina Reche

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Fulvio Amato

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Marco Pandolfi

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Jorge Pey

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

B. Artíñano

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Noemí Pérez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Angeliki Karanasiou

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge