Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mara B. Bryan is active.

Publication


Featured researches published by Mara B. Bryan.


Steroids | 2008

Sex steroids and their receptors in lampreys

Mara B. Bryan; Alexander P. Scott; Weiming Li

The use of steroids and their receptors as ligand-gated transcription factors is thought to be an important step in vertebrate evolution. The lamprey is the earliest-evolving vertebrate to date in which sex steroids and their receptors have been demonstrated to have hormonal roles similar to those found in jawed vertebrates. Sex steroids and their receptors have been examined in several lamprey species, and the majority of studies have focused on the sea lamprey, Petromyzon marinus. While classical steroids appear to be present in lampreys, their function, concentrations, and synthesis have not been determined conclusively. The only classical steroid that is thought to act as a hormone in both males and females is estradiol. Recent research has established that lampreys produce and circulate 15alpha-hydroxylated steroids, and that these steroids respond to upstream stimulation within the hypothalamic-pituitary-gonadal axis. In particular, 15alpha-hydroxyprogesterone is highly sensitive and responds in great magnitude to stimulation, and is likely a hormone. Lampreys also appear to use androstenedione, a precursor to vertebrate androgens, as their main androgen, and a receptor for androstenedione has recently been described. Non-classical steroids are prevalent in many aquatic vertebrates, and the non-classical steroids found in the sea lamprey may represent an evolutionary artifact, or alternatively may be a way to avoid endocrine disruption when ingesting the body fluids of host fish. The lamprey will continue to be an interesting model for examining the evolution of steroid hormones, steroid receptors, and steroid function.


Biotechnology and Bioengineering | 2012

Biased clique shuffling reveals stabilizing mutations in cellulase Cel7A

Craig M. Dana; Poonam Saija; Sarala M. Kal; Mara B. Bryan; Harvey W. Blanch; Douglas S. Clark

Renewable fuels produced from biomass‐derived sugars are receiving increasing attention. Lignocellulose‐degrading enzymes derived from fungi are attractive for saccharification of biomass because they can be produced at higher titers and at significantly less cost than those produced by bacteria or archaea. However, their properties can be suboptimal; for example, they are subject to product inhibition and are sensitive to small changes in pH. Furthermore, increased thermostability would be advantageous for saccharification as increased temperature may reduce the opportunity for microbial contamination. We have developed a mutagenesis platform to improve these properties and applied it to increase the operating temperature and thermostability of the fungal glycosyl hydrolase Cel7A. Secretion of Cel7A at titers of 26 mg/L with limited hyperglycosylation was achieved using a Saccharomyces cerevisiae strain with upregulated protein disulfide isomerase, an engineered α‐factor prepro leader, and deletion of a plasma membrane ATPase. Using biased clique shuffling (BCS) of 11 Cel7A genes, we generated a small library (469) rich in activity (86% of the chimeras were active) and identified 51 chimeras with improved thermostability, many of which contained mutations in the loop networks that extend over the enzymes active site. This BCS library was far superior as a source of active and stable chimeras compared to an equimolar library prepared from the same 11 genes. Biotechnol. Bioeng. 2012; 109: 2710–2719.


The Journal of Neuroscience | 2008

Neurogenic and Neuroendocrine Effects of Goldfish Pheromones

Yu Wen Chung-Davidson; Christopher B. Rees; Mara B. Bryan; Weiming Li

Goldfish (Carassius auratus) use reproductive hormones as endocrine signals to synchronize sexual behavior with gamete maturation and as exogenous signals (pheromones) to mediate spawning interactions between conspecifics. We examined the differential effects of two hormonal pheromones, prostaglandin F2α (PGF2α) and 17α,20β-dihydroxy-4-pregnen-3-one (17,20β-P) on neurogenesis, neurotransmission, and neuronal activities, and on plasma androstenedione (AD) levels. Exposure to waterborne PGF2α induced a multitude of changes in male goldfish brain. Histological examination indicated an increase in the number of dividing cells in male diencephalon (p < 0.05, Kruskal–Wallis test). Real-time quantitative PCR tests showed elevated levels of transcripts for the salmon gonadotropin-releasing hormone (GnRH) in the male telencephalon and cerebellum (p < 0.005, one-way ANOVA) and for ChAT (choline acetyltransferase) in the male vagal lobe and the brainstem underneath the vagal lobe (p < 0.05, one-way ANOVA). Therefore, PGF2α seemed to modulate male brain plasticity that coincided with behavioral changes during spawning season. Exposure to waterborne 17,20β-P, however, increased circulatory levels of immunoreactive AD in males and the transcripts of androgen receptor and cGnRH-II (chicken-II GnRH) in the female cerebellum (p < 0.05, one-way ANOVA). PGF2α and 17,20β-P thereby seemed to act through distinct pathways to elicit different responses in the neuroendocrine system. This is the first finding that links a specific pheromone molecule (PGF2α) to neurogenesis in a vertebrate animal.


Biology of Reproduction | 2007

The Sea Lamprey (Petromyzon marinus) Has a Receptor for Androstenedione

Mara B. Bryan; Alexander P. Scott; Weiming Li

Abstract The use of nuclear steroid receptors as ligand-activated transcription factors is a critical event in vertebrate evolution. It is believed that nuclear steroid receptors arose at or before the vertebrate radiation, except for an androgen receptor (Ar) that evolved only in the gnathostome line. We report an androgen-Ar complex in the male sea lamprey (Petromyzon marinus), an extant jawless vertebrate. The androgen with the highest affinity is not testosterone, but its direct precursor, androstenedione (Ad). To establish that the binding moiety in lamprey testis is a receptor—and not an “androgen-binding protein”—we have shown that it can be extracted from the nucleus as well as the cytosol, that the Ad-receptor complex binds to DNA, and that the receptor is approximately twice the size of an androgen-binding protein extracted from the Atlantic salmon testis. The capacity (and high affinity) of binding of the lamprey Ar is such that much of the Ad present in male lampreys becomes sequestered within the testis (as opposed to circulating in the plasma). Concentrations of Ad (but not of testosterone) in plasma and testis tissue are upregulated by injection of lamprey GnRH. Implantation of male lampreys with exogenous Ad significantly accelerates the development of the testis and growth of at least one secondary male characteristic. It appears that all classes of steroid hormones have contributed to the evolution of the regulatory complexity of steroid receptors found in modern vertebrates.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2010

Annual sex steroid and other physiological profiles of Pacific lampreys (Entosphenus tridentatus)

Matthew G. Mesa; Jennifer M. Bayer; Mara B. Bryan; Stacia A. Sower

We documented changes in plasma levels of estradiol 17-beta (E2), progesterone (P), 15alpha-hydroxytestosterone (15alpha-T), thyroxine (T4), triiodothyronine (T3), protein, triglycerides (TGs), and glucose in adult Pacific lampreys (Entosphenus tridentatus) held in the laboratory in two different years. Levels of E2 in both sexes ranged from 0.5 to 2 ng/mL from September to March, peaked in late April (2-4 ng/mL), and decreased in May, with levels higher in males than in females. Levels of P were low from September through April, but then increased substantially during May (2-4 ng/mL), with levels again highest in males. Levels of 15alpha-T in males were around 0.75 ng/mL through the winter before exceeding 1 ng/mL in April and decreasing thereafter, whereas females showed a gradual increase from 0.25 ng/mL in November to 0.5 ng/mL in April before decreasing. Thyroxine concentrations differed between fish in each year, with most having levels ranging from 0.75 to 2.5 ng/mL in the fall and winter, and only fish in 2003 showing distinct peaks (3-4 ng/mL) in early April or May. Plasma T3 was undetectable from November through mid-March before surging dramatically in April (ca. 150 ng/mL) and decreasing thereafter. Levels of protein, TGs, and glucose decreased or were stable during the fall and winter with TGs and glucose surging in late April to early May for some fish. Our study is the first to document long-term physiological changes in Pacific lampreys during overwintering and sexual maturation and increases our understanding of the life history of this unique fish.


BMC Neuroscience | 2013

Pheromonal bile acid 3-ketopetromyzonol sulfate primes the neuroendocrine system in sea lamprey

Yu Wen Chung-Davidson; Huiyong Wang; Michael J. Siefkes; Mara B. Bryan; Hong Wu; Nicholas S. Johnson; Weiming Li

BackgroundVertebrate pheromones are known to prime the endocrine system, especially the hypothalamic-pituitary-gonadal (HPG) axis. However, no known pheromone molecule has been shown to modulate directly the synthesis or release of gonadotropin releasing hormone (GnRH), the main regulator of the HPG axis. We selected sea lamprey (Petromyzon marinus) as a model system to determine whether a single pheromone component alters the output of GnRH.Sea lamprey male sex pheromones contain a main component, 7α, 12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3 keto-petromyzonol sulfate or 3kPZS), which has been shown to modulate behaviors of mature females. Through a series of experiments, we tested the hypothesis that 3kPZS modulates both synthesis and release of GnRH, and subsequently, HPG output in immature sea lamprey.ResultsThe results showed that natural male pheromone mixtures induced differential steroid responses but facilitated sexual maturation in both sexes of immature animals (χ2 = 5.042, dF = 1, p < 0.05). Exposure to 3kPZS increased plasma 15α-hydroxyprogesterone (15α-P) concentrations (one-way ANOVA, p < 0.05) and brain gene expressions (genes examined: three lamprey (l) GnRH-I transcripts, lGnRH-III, Jun and Jun N-terminal kinase (JNK); one-way ANOVA, p < 0.05), but did not alter the number of GnRH neurons in the hypothalamus in immature animals. In addition, 3kPZS treatments increased lGnRH peptide concentrations in the forebrain and modulated their levels in plasma. Overall, 3kPZS modulation of HPG axis is more pronounced in immature males than in females.ConclusionsWe conclude that a single male pheromone component primes the HPG axis in immature sea lamprey in a sexually dimorphic manner.


The Journal of Experimental Biology | 2013

A thermogenic secondary sexual character in male sea lamprey

Yu Wen Chung-Davidson; M. Cody Priess; Chu Yin Yeh; Cory O. Brant; Nicholas S. Johnson; Ke Li; Kaben Nanlohy; Mara B. Bryan; C. Titus Brown; Jongeun Choi; Weiming Li

SUMMARY Secondary sexual characters in animals are exaggerated ornaments or weapons for intrasexual competition. Unexpectedly, we found that a male secondary sexual character in sea lamprey (Petromyzon marinus) is a thermogenic adipose tissue that instantly increases its heat production during sexual encounters. This secondary sexual character, developed in front of the anterior dorsal fin of mature males, is a swollen dorsal ridge known as the ‘rope’ tissue. It contains nerve bundles, multivacuolar adipocytes and interstitial cells packed with small lipid droplets and mitochondria with dense and highly organized cristae. The fatty acid composition of the rope tissue is rich in unsaturated fatty acids. The cytochrome c oxidase activity is high but the ATP concentration is very low in the mitochondria of the rope tissue compared with those of the gill and muscle tissues. The rope tissue temperature immediately rose up to 0.3°C when the male encountered a conspecific. Mature males generated more heat in the rope and muscle tissues when presented with a mature female than when presented with a male (paired t-test, P<0.05). On average, the rope generated 0.027±0.013 W cm−3 more heat than the muscle in 10 min. Transcriptome analyses revealed that genes involved in fat cell differentiation are upregulated whereas those involved in oxidative-phosphorylation-coupled ATP synthesis are downregulated in the rope tissue compared with the gill and muscle tissues. Sexually mature male sea lamprey possess the only known thermogenic secondary sexual character that shows differential heat generation toward individual conspecifics.


General and Comparative Endocrinology | 2013

An anti-steroidogenic inhibitory primer pheromone in male sea lamprey (Petromyzon marinus)

Yu Wen Chung-Davidson; Huiyong Wang; Mara B. Bryan; Hong Wu; Nicholas S. Johnson; Weiming Li

Reproductive functions can be modulated by both stimulatory and inhibitory primer pheromones released by conspecifics. Many stimulatory primer pheromones have been documented, but relatively few inhibitory primer pheromones have been reported in vertebrates. The sea lamprey male sex pheromone system presents an advantageous model to explore the stimulatory and inhibitory primer pheromone functions in vertebrates since several pheromone components have been identified. We hypothesized that a candidate sex pheromone component, 7α, 12α-dihydroxy-5α-cholan-3-one-24-oic acid (3 keto-allocholic acid or 3kACA), exerts priming effects through the hypothalamic-pituitary-gonadal (HPG) axis. To test this hypothesis, we measured the peptide concentrations and gene expressions of lamprey gonadotropin releasing hormones (lGnRH) and the HPG output in immature male sea lamprey exposed to waterborne 3kACA. Exposure to waterborne 3kACA altered neuronal activation markers such as jun and jun N-terminal kinase (JNK), and lGnRH mRNA levels in the brain. Waterborne 3kACA also increased lGnRH-III, but not lGnRH-I or -II, in the forebrain. In the plasma, 3kACA exposure decreased all three lGnRH peptide concentrations after 1h exposure. After 2h exposure, 3kACA increased lGnRH-I and -III, but decreased lGnRH-II peptide concentrations in the plasma. Plasma lGnRH peptide concentrations showed differential phasic patterns. Group housing condition appeared to increase the averaged plasma lGnRH levels in male sea lamprey compared to isolated males. Interestingly, 15α-hydroxyprogesterone (15α-P) concentrations decreased after prolonged 3kACA exposure (at least 24h). To our knowledge, this is the only known synthetic vertebrate pheromone component that inhibits steroidogenesis in males.


Hormones and Behavior | 2008

Neuroendocrine and behavioral responses to weak electric fields in adult sea lampreys (Petromyzon marinus)

Yu Wen Chung-Davidson; Mara B. Bryan; John H. Teeter; Christine N. Bedore; Weiming Li

We characterized the behavioral and neuroendocrine responses of adult sea lampreys (Petromyzon marinus) to weak electric fields. Adult sea lampreys, captured during upstream spawning migration, exhibited limited active behaviors during exposure to weak electric fields and spent the most time attached to the wall of the testing arena near the cathode (-). For adult male sea lampreys, exposure to weak electric fields resulted in increased lamprey (l) GnRH-I mRNA expression but decreased lGnRH-I immunoreactivities in the forebrain, and decreased Jun (a neuronal activation marker) mRNA levels in the brain stem. Similar effects were not observed in the brains of female sea lampreys after weak electric field stimulation. The influence of electroreception on forebrain lGnRH suggests that electroreception may modulate the reproductive systems in adult male sea lampreys. The changes in Jun expression may be associated with swimming inhibition during weak electric field stimulation. The results for adult sea lampreys are the opposite of those obtained using parasitic-stage sea lampreys, which displayed increased activity during and after cathodal stimulation. Our results demonstrate that adult sea lampreys are sensitive to weak electric fields, which may play a role in reproduction. They also suggest that electrical stimuli mediate different behaviors in feeding-stage and spawning-stage sea lampreys.


Transactions of The American Fisheries Society | 2004

The Effect of Chemosterilization on Sex Steroid Production in Male Sea Lampreys

Bradley A. Young; Mara B. Bryan; Stacia A. Sower; Weiming Li

Abstract The sterile male release technique (SMRT) is currently used as part of an integrated effort to control Great Lakes populations of sea lampreys Petromyzon marinus, yet the effects of chemosterilization on the reproductive endocrinology of the sea lamprey are unknown. Male sea lampreys were chemosterilized with bisazir (P, P-bis(1-aziridinyl)-N-methylphosphinothioic amide) and given timed-release implants containing lamprey d-Arg(6)-GnRH I (where GnRH is an acronym for gonadotropin-releasing hormone) and lamprey d-Arg(6)-GnRH III. The effects of chemosterilization on the reproductive endocrine system were evaluated by measuring plasma concentrations of 17β-estradiol (E2) and 15α-hydroxytestosterone (15α-T) with radioimmunoassays. The effectiveness of the implants was evaluated by measuring plasma concentrations of steroids and determining the duration of steroidal responses. The E2 and 15α-T response profiles showed no difference between sterilized and untreated male sea lampreys (P = 0.53). Peak c...

Collaboration


Dive into the Mara B. Bryan's collaboration.

Top Co-Authors

Avatar

Weiming Li

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stacia A. Sower

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Hong Wu

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Huiyong Wang

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Jennifer M. Bayer

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Sang Seon Yun

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

C. Titus Brown

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge