Mara Di Giulio
University of Chieti-Pescara
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mara Di Giulio.
International Journal of Molecular Sciences | 2011
Antonio Iannitelli; Rossella Grande; Antonio Di Stefano; Mara Di Giulio; Piera Sozio; Lucinda Janete Bessa; Sara Laserra; Cecilia Paolini; Feliciano Protasi; Luigina Cellini
The ability to form biofilms contributes significantly to the pathogenesis of many microbial infections, including a variety of ocular diseases often associated with the biofilm formation on foreign materials. Carvacrol (Car.) is an important component of essential oils and recently has attracted much attention pursuant to its ability to promote microbial biofilm disruption. In the present study Car. has been encapsulated in poly(dl-lactide-co-glycolide (PLGA) nanocapsules in order to obtain a suitable drug delivery system that could represent a starting point for developing new therapeutic strategies against biofilm-associated infections, such as improving the drug effect by associating an antimicrobial agent with a biofilm viscoelasticity modifier.
Journal of Medical Microbiology | 2009
Antonia Nostro; Andreana Marino; Anna Rita Blanco; Luigina Cellini; Mara Di Giulio; Francesco Pizzimenti; Andrea Sudano Roccaro; Giuseppe Bisignano
Carvacrol is an important component of essential oils and recently has attracted much attention as a result of its biological properties, such as a wide spectrum of antimicrobial activity. The aim of this study was to evaluate the effect of carvacrol in liquid and vapour phase on preformed biofilms of Staphylococcus aureus and Staphylococcus epidermidis by determining biofilm biomass and cultivable cell numbers, and by using epifluorescence and scanning electron microscopy. Carvacrol was able to reduce biofilm biomass and cell viability more effectively when used with liquid contact rather than with vapour phase. The efficacy of treatment with carvacrol vapour was found to be dependent on exposure time. The predominance of red fluorescence using a LIVE/DEAD BacLight Viability kit (Molecular Probes) and the partially destroyed biofilm architecture as determined by microscopy in treated samples provided evidence for the efficacy of carvacrol. The findings of this investigation suggest a potential application for carvacrol in the inactivation of staphylococcal biofilms.
International Wound Journal | 2015
Lucinda J. Bessa; Paolo Fazii; Mara Di Giulio; Luigina Cellini
Wound infection plays an important role in the development of chronicity, delaying wound healing. This study aimed to identify the bacterial pathogens present in infected wounds and characterise their resistance profile to the most common antibiotics used in therapy. Three hundred and twelve wound swab samples were collected from 213 patients and analysed for the identification of microorganisms and for the determination of their antibiotic susceptibility. Patients with diverse type of wounds were included in this retrospective study, carried out from March to September 2012. A total of 28 species were isolated from 217 infected wounds. The most common bacterial species detected was Staphylococcus aureus (37%), followed by Pseudomonas aeruginosa (17%), Proteus mirabilis (10%), Escherichia coli (6%) and Corynebacterium spp. (5%). Polymicrobial infection was found in 59 (27·1%) of the samples and was mainly constituted with two species. The most common association was S. aureus/P. aeruginosa. All Gram‐positives were susceptible to vancomycin and linezolid. Gram‐negatives showed quite high resistance to the majority of antibiotics, being amikacin the most active against these bacteria. This study is mostly oriented to health care practitioners who deal with wound management, making them aware about the importance of wound infection and helping them to choose the adequate treatment options to control microbial infection in wounds.
Bioelectromagnetics | 2008
Luigina Cellini; Rossella Grande; Emanuela Di Campli; Soraya Di Bartolomeo; Mara Di Giulio; Iole Robuffo; Oriana Trubiani; Maria A. Mariggiò
To investigate the ability of prokaryotic microorganisms to activate strategies in adapting themselves to the environmental stress induced by exposure to extremely low frequency electromagnetic fields (ELF-EMF), cultures of Escherichia coli ATCC 700926 exposed at 50 Hz EMF (0.1, 0.5, 1.0 mT), and the respective sham-exposed controls were studied for: the total and culturable counts, the viability status, the antimicrobial susceptibility pattern, the morphological analysis, the genotypical and transcriptional profile. Exposed samples and controls displayed similar total and culturable counts, whereas an increased cell viability was observed in exposed samples re-incubated for 24 h outside of the solenoid compared to the corresponding controls. An exposure to 50 Hz EMF of 20-120 min produced a significant change of E. coli morphotype with a presence of coccoid cells also aggregated in clusters after re-incubation of 24 h outside of the solenoid. Atypical lengthened bacterial forms were also observed suggesting a probable alteration during cell division. No changes among DNA fingerprintings and some differences in RNA-AFLP analysis were observed for each 50 Hz EMF intensities evaluated. Our results indicate that an exposure to 50 Hz EMF acts as a stressing factor on bacteria which can represent a suitable model to investigate acute and chronic effects related to ELF-EMF exposure.
Microbial Biotechnology | 2009
Antonio Di Stefano; Eleonora D'Aurizio; Oriana Trubiani; Rossella Grande; Emanuela Di Campli; Mara Di Giulio; Soraya Di Bartolomeo; Piera Sozio; Antonio Iannitelli; Antonia Nostro; Luigina Cellini
The viscoelastic properties of mono‐microbial biofilms produced by ocular and reference staphylococcal strains were investigated. The microorganisms were characterized for their haemolytic activity and agr typing and the biofilms, grown on stainless steel surface under static conditions, were analysed by Confocal Laser Scanning Microscopy. Static and dynamic rheometric tests were carried out to determine the steady‐flow viscosity and the elastic and viscous moduli. The analysed biofilms showed the typical time‐dependent behaviour of viscoelastic materials with considerable elasticity and mechanical stability except for Staphylococcus aureus ATCC 29213 biofilm which showed a very fragile structure. In particular, S. aureus 6ME biofilm was more compact than other staphylococcal biofilms studied with a yield stress ranging between 2 and 3 Pa. The data obtained in this work could represent a starting point for developing new therapeutic strategies against biofilm‐associated infections, such as improving the drug effect by associating an antimicrobial agent with a biofilm viscoelasticity modifier.
Apmis | 2012
Antonia Nostro; Luigina Cellini; Mara Di Giulio; Manuela D'Arrigo; Andreana Marino; Anna Rita Blanco; Angelo Favaloro; Giuseppina Cutroneo; Giuseppe Bisignano
Biofilms are a serious problem, cause of severe inconvenience in the biomedical, food and industrial environment. Staphylococcus aureus and S. epidermidis are important pathogenic bacteria able to form thick and resistant biofilms on various surfaces. Therefore, strategies aimed at preventing or at least interfering with the initial adhesion and subsequent biofilm formation are a considerable achievement. The aim of this study was to evaluate the effect of alkaline pH on bacterial adhesion and further biofilm formation of S. aureus and S. epidermidis strains by biofilm biomass, cell‐surface hydrophobicity, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) analysis. The results demonstrated that the amount of biofilm biomass formed and the surface hydrophobicity were significantly less than what were observed at higher levels of pH. SEM and CLSM images revealed a poorly structured and very thin biofilm (2.5–3 times thinner than that of the controls). The inhibiting effect of the alkaline pH on the bacterial attachment impaired the normal development of biofilm that arrested at the microcolony stage. Alkaline formulations could be promising towards the control of bacterial colonization and therefore the reduction of the biofilm‐related hazard. In the clinical setting, alkaline solutions or cleaners could be promising to prevent the bacterial colonization, by treating surfaces such as catheters or indwelling medical devices, reducing the risk of biofilm related infections.
Scandinavian Journal of Gastroenterology | 2008
Luigina Cellini; Rossella Grande; Emanuela Di Campli; T. Traini; Mara Di Giulio; Stefano Nicola Lannutti; Roberto Lattanzio
Objective. To investigate the dynamic behaviour of Helicobacter pylori in the colonization of the human gastric mucosa in patients previously treated for H. pylori infection. Material and methods. Twenty-one dyspeptic patients were included in the study. Biopsies from each individual were taken and analysed for H. pylori detection using cultural, molecular and ultrastructural methods. Results. Through culture, H. pylori was isolated in 7 out of 21 patients and the detection of the minimum inhibitory concentration (MIC) against drugs commonly used in H. pylori therapy revealed a susceptibility panel in which only one strain was multidrug resistant. By studying the expression of the H. pyloriglmM constitutive gene, viable H. pylori cells were detected in 19 out of 21 analysed biopsies. In these positive cases, the expression of the Quorum-Sensing related gene, luxS, was always detected. The analysis of glmM and luxS sequences confirmed the H. pylori identity. Scanning electron microscopy (SEM) analysis of biopsies from patients harbouring culturable bacteria showed a prevalent “S-shape” H. pylori morphotype co-existent with coccoid aggregated bacteria embedded in an abundant matrix; while samples from patients shown as H. pylori-positive only through the molecular method showed clustered coccoid bacteria arranged in a microbial biofilm. Conclusions. In the present work we describe a new scenario in H. pylori mucosa colonization suggesting, in infection recalcitrance, the planning of more efficacious protocols in order also to identify camouflaged and protected clustered bacteria, taking into account this serious microbial problem in medicine in the recommendation of therapeutic regimens.
International Wound Journal | 2012
M. Baffoni; Lucinda J. Bessa; Rossella Grande; Mara Di Giulio; Matteo Mongelli; Antonio Ciarelli; Luigina Cellini
Chronic wounds, including diabetic foot ulcers, pressure ulcers and venous leg ulcers, represent a significant cause of morbidity in developed countries, predominantly in older patients. The aetiology of these wounds is probably multifactorial, but the role of bacteria in their pathogenesis is still unclear. Moreover, the presence of bacterial biofilms has been considered an important factor responsible for wounds chronicity. We aimed to investigate the laser action as a possible biofilm eradicating strategy, in order to attempt an additional treatment to antibiotic therapy to improve wound healing. In this work, the effect of near‐infrared (NIR) laser was evaluated on mono and polymicrobial biofilms produced by two pathogenic bacterial strains, Staphylococcus aureus PECHA10 and Pseudomonas aeruginosa PECHA9, both isolated from a chronic venous leg ulcer. Laser effect was assessed by biomass measurement, colony forming unit count and cell viability assay. It was shown that the laser treatment has not affected the biofilms biomass neither the cell viability, although a small disruptive action was observed in the structure of all biofilms tested. A reduction on cell growth was observed in S. aureus and in polymicrobial biofilms. This work represents an initial in vitro approach to study the influence of NIR laser treatment on bacterial biofilms in order to explain its potentially advantageous effects in the healing process of chronic infected wounds.
International Journal of Molecular Sciences | 2013
Mara Di Giulio; Soraya Di Bartolomeo; Emanuela Di Campli; Silvia Sancilio; Eleonora Marsich; Andrea Travan; A. Cataldi; Luigina Cellini
In this work, we studied the antimicrobial properties of a nanocomposite system based on a lactose-substituted chitosan and silver nanoparticles: Chitlac-nAg. Twofold serial dilutions of the colloidal Chitlac-nAg solution were both tested on Streptococcus mitis, Streptococcus mutans, and Streptococcus oralis planktonic phase and biofilm growth mode as well as on saliva samples. The minimum inhibitory and bactericidal concentrations of Chitlac-nAg were evaluated together with its effect on sessile cell viability, as well as both on biofilm formation and on preformed biofilm. In respect to the planktonic bacteria, Chitlac-nAg showed an inhibitory/bactericidal effect against all streptococcal strains at 0.1% (v/v), except for S. mitis ATCC 6249 that was inhibited at one step less. On preformed biofilm, Chitlac-nAg at a value of 0.2%, was able to inhibit the bacterial growth on the supernatant phase as well as on the mature biofilm. For S. mitis ATCC 6249, the biofilm inhibitory concentration of Chitlac-nAg was 0.1%. At sub-inhibitory concentrations, the Streptococcal strains adhesion capability on a polystyrene surface showed a general reduction following a concentration-dependent-way; a similar effect was obtained for the metabolic biofilm activity. From these results, Chitlac-nAg seems to be a promising antibacterial and antibiofilm agent able to hinder plaque formation.
Apmis | 2012
Mara Di Giulio; Simonetta D’Ercole; Susi Zara; Amelia Cataldi; Luigina Cellini
Di Giulio M, D’Ercole S, Zara S, Cataldi A, Cellini L. Streptococcus mitis/human gingival fibroblasts co‐culture: the best natural association in answer to the 2‐hydroxyethyl methacrylate release. APMIS 2011.