Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mara Fiorani is active.

Publication


Featured researches published by Mara Fiorani.


Journal of Nutritional Biochemistry | 2010

Mitochondria accumulate large amounts of quercetin: prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid

Mara Fiorani; Andrea Guidarelli; Manuela Blasa; Catia Azzolini; Manila Candiracci; Elena Piatti; Orazio Cantoni

Quercetin uptake in Jurkat cells is extremely rapid and associated with a remarkable accumulation of the flavonoid, dependent on its binding to intracellular components. Cell-associated quercetin is biologically active, quantitatively consumed to promote survival in the presence of reactive species, such as peroxynitrite (ONOO(-)), or reduction of extracellular oxidants via activation of plasma membrane oxidoreductases. In alternative, quercetin is very slowly released upon post-incubation in drug-free medium, an event significantly accelerated by extracellular albumin. Quercetin uptake is also observed in isolated mitochondria, resulting in an enormous accumulation of the flavonoid, consumed under conditions associated with prevention of lipid peroxidation induced by ONOO(-). Interestingly, remarkable quercetin accumulation is also detected in the mitochondria isolated from quercetin-pre-loaded cells, and exposure to either ONOO(-) or extracellular oxidants caused the parallel loss of both the mitochondrial and cytosolic fractions of the flavonoid. In conclusion, Jurkat cells accumulate large amounts of quercetin and even larger amounts of the flavonoid further accumulate in their mitochondria. Intramitochondrial quercetin appears to be functional for prevention of mitochondrial damage as well as for redistribution to the cytosol, when the fraction of the flavonoid therein retained is progressively consumed either by cell-permeant oxidants or by activation of plasma membrane oxidoreductases.


Biochimica et Biophysica Acta | 1995

Hydrogen peroxide-and fetal bovine serum-induced DNA synthesis in vascular smooth muscle cells: positive and negative regulation by protein kinase C isoforms

Mara Fiorani; Orazio Cantoni; Andrea Tasinato; Daniel Boscoboinik; Angelo Azzi

Hydrogen peroxide and fetal bovine serum stimulate DNA synthesis in growth-arrested smooth muscle cells with remarkably similar kinetics and cell density dependence. However, while stimulation with fetal bovine serum results in cell proliferation, that by H2O2 is followed by cell death. Depletion of conventional and novel protein kinase C isoforms, resulting from a long treatment with phorbol-12-myristate-13-acetate, further increases H2O2-induced DNA synthesis. On the other hand, the specific protein kinase C inhibitor calphostin C abolished the increased DNA synthesis promoted by fetal bovine serum or H2O2. H2O2 increases protein kinase C activity in smooth muscle cells. This effect is markedly reduced, but not abolished, by down-regulation of the alpha, delta and epsilon protein kinase C isoforms. Thus, the zeta isoform of protein kinase C, which is not down-regulated, may be responsible for the residual H2O2 stimulation of protein kinase C. In conclusion, the results obtained show that H2O2 stimulates protein kinase C activity and DNA synthesis in growth-arrested smooth muscle cells: these events are not followed by cell proliferation but rather by cell death. This H2O2 stimulated DNA synthesis appears to be negatively controlled by alpha, delta and epsilon isoforms and positively controlled by the zeta isoform of protein kinase C.


Free Radical Research | 2001

Quercetin prevents glutathione depletion induced by dehydroascorbic acid in rabbit red blood cells

Mara Fiorani; Roberta De Sanctis; Paola Menghinello; Luigi Cucchiarini; Barbara Cellini; Marina Dachà

Exposure of rabbit red blood cells to dehydroascorbic acid (DHA) caused a significant decline in glutathione content which was largely prevented by quercetin, whereas it was insensitive to various antioxidants, iron chelators or scavengers of reactive oxygen species. This response was not mediated by chemical reduction of either extracellular DHA or intracellular glutathione disulfide. In addition, the flavonoid did not affect the uptake of DHA or its reduction to ascorbic acid. Rather, quercetin appeared to specifically stimulate downstream events promoting GSH formation.


Free Radical Research | 2003

Human red blood cells as a natural flavonoid reservoir.

Mara Fiorani; Augusto Accorsi; Orazio Cantoni

Quercetin is rapidly and avidly taken up by human red blood cells (RBC) via a passive diffusion mechanism, driven by flavonoid binding to haemoglobin and resulting in an almost quantitative accumulation of the flavonoid. Heamoglobin-free resealed ghosts accumulated quercetin exclusively in the membrane fraction. Cell-associated quercetin was biological active and could be quantitatively utilised to support the reduction of extracellular oxidants mediated by a transplasma-membrane oxido-reductase. Additional experimental evidence revealed that quercetin uptake declined in the presence of albumin and that, under these conditions, the amount of cell-associated quercetin is enhanced by increasing the RBC number. Quercetin release from flavonoid-preloaded RBC was observed only in the presence of albumin (or in human plasma) and this response was progressively inhibited upon incubation in solutions containing albumin previously exposed to increasing concentrations of quercetin and cleared of the unbound fraction of the flavonoid. Furthermore, exposure to quercetin pre-saturated albumin promoted accumulation of the flavonoid in fresh RBC and this response was a direct function of the extent of albumin saturation. These results, indicating a flow of quercetin from albumin to haemoglobin, and vice versa, are therefore consistent with the possibility that human RBC play a pivotal role in the distribution and bioavailability of circulating flavonoids.


Free Radical Biology and Medicine | 2002

Intracellular flavonoids as electron donors for extracellular ferricyanide reduction in human erythrocytes.

Mara Fiorani; Roberta De Sanctis; Roberta De Bellis; Marina Dachà

Reduction of extracellular ferricyanide [Fe(CN)(6)](-3) to ferrocyanide by intact cells reflects the activity of a trans-plasma membrane oxidoreductase that, in human red blood cells, utilizes ascorbic acid as an electron donor. We herein report that the flavonoids quercetin and myricetin, while inhibiting dehydroascorbic acid uptake-and thus the erythrocyte ascorbic acid content-effectively stimulate the extracellular reduction of ferricyanide. Other flavonoids such as rutin, acacetin, apigenin, and genistein do not show the same effect. The notion that quercetin or myricetin may serve as an intracellular donor for a trans-plasma membrane oxidoreductase is supported by the following lines of evidence: (i) they afford direct reduction of ferricyanide; (ii) extracellular reduction of ferricyanide was not mediated by direct effects of the flavonoids released by the cells and was abolished by the sulphydryl reagent parachloromercuribenzenesulfonic acid (pCMBS); (iii) the intracellular concentrations of quercetin or myricetin well correlate with increases in ferricyanide reduction; (iv) the intracellular concentration of the flavonoids dramatically declines after ferricyanide exposure. Taken together, the results presented in this study demonstrate that myricetin and quercetin, which accumulate in large amounts in red blood cells, act as intracellular substrates of a pCMBS-sensitive trans-plasma membrane oxidoreductase. This may represent a novel mechanism whereby these flavonoids exert beneficial effects under oxidative stress conditions.


Bioelectromagnetics | 1997

In vitro effects of 50 Hz magnetic fields on oxidatively damaged rabbit red blood cells

Mara Fiorani; Beatrice Biagiarelli; Flavio Vetrano; G. M. Guidi; Marina Dachà; Vilberto Stocchi

The aim of this study was to investigate the effects of 50 Hz magnetic fields (0.2-0.5 mT) on rabbit red blood cells (RBCs) that were exposed simultaneously to the action of an oxygen radical-generating system, Fe(II)/ascorbate. Previous data obtained in our laboratory showed at the exposure of rabbit erythrocytes or reticulocytes to Fe(II)/ascorbate hexokinase inactivation, whereas the other glycolytic enzymes do not show any decay. We also observed depletion of reduced glutathione (GSH) content with a concomitant intracellular and extracellular increase in oxidized glutathione (GSSG) and a decrease in energy charge. In this work we investigated whether 50 Hz magnetic fields could influence the intracellular impairments that occur when erythrocytes or reticulocytes are exposed to this oxidant system, namely, inactivation of hexokinase activity, GSH depletion, a change in energy charge, and hemoglobin oxidation. The results obtained indicate the a 0.5 mT magnetic field had no effect on intact RBCs, whereas it increased the damage with Fe(II)/ascorbate to a 0.5 mT magnetic field induced a significant further decay in hexokinase activity (about 20%) as well as a twofold increase in methemoglobin production compared with RBCs that were exposed to the oxidant system alone. Although further studies will be needed to determine the physiological implications of these data, the results reported in this study demonstrate that the effects of the magnetic fields investigated are able to potentiate the cellular damage induced in vitro by oxidizing agents.


British Journal of Nutrition | 2005

Dietary flavonoids as intracellular substrates for an erythrocyte trans-plasma membrane oxidoreductase activity.

Mara Fiorani; Augusto Accorsi

The plasma membrane oxidoreductase (PMOR) activity, which mainly utilises ascorbate as intracellular electron donor, represents a major mechanism for cell-dependent reduction of extracellular oxidants and might be an important process used by the erythrocytes to keep a reduced plasma environment. We previously reported that in human erythrocytes, myricetin and quercetin act as intracellular substrates of a PMOR showing a novel mechanism whereby these flavonoids could exert beneficial effects under oxidative stress conditions. Here, we evaluated the ability of different flavonoids (quercetin, myricetin, morin, kaempferol, fisetin, catechin, luteolin, apigenin, acacetin, rutin, taxifolin, naringenin, genistein) and of two in vivo O-methylated metabolites of quercetin (isorhamnetin and tamarixetin) to be substrates of PMOR, by comparing their antioxidant capacity (i.e. direct interaction with the oxidant ferricyanide or with the free radical 1,1-diphenyl-2-picryl-hydrazil) with their ability to penetrate the erythrocytes and donate electrons to the PMOR. The results obtained indicate that, although most of the flavonoids display significant antioxidant activities, only those (quercetin, myricetin, fisetin) that combine the cathecol structure of the B ring (responsible for the reducing activity) with the 2,3 double bond and 4-oxo function of the C ring (responsible for the uptake by erythrocytes) can act as intracellular substrates for PMOR. It is of note that the metabolites of quercetin enter erythrocytes and donate electrons to the PMOR as the parent compound. The present data show a relationship between the flavonoid structures and their ability to provide electrons to the PMOR, suggesting an additional mechanism whereby dietary flavonoids may exert beneficial effects in man.


Molecular and Cellular Biochemistry | 2000

Dehydroascorbic acid irreversibly inhibits hexokinase activity

Mara Fiorani; Roberta De Sanctis; Francesca Scarlatti; Luciana Vallorani; Roberta De Bellis; Giordano Serafini; Marzia Bianchi; Vilberto Stocchi

The oxidized form of vitamin C (dehydroascorbic acid, DHA) completely and irreversibly inactivates recombinant human hexokinase type I, in a pseudo-first order fashion. The inactivation reaction occurs without saturation, indicating that DHA does not form a reversible complex with hexokinase. Further characterization of this response revealed that the inactivation does not require oxygen and that dithiothreitol, while able to prevent the DHA-mediated loss of enzyme activity, failed to restore the activity of the DHA-inhibited enzyme. Inactivation was not associated with cleavage of the peptide chain or cross-linking. The decay in enzymatic activity was however both dependent on deprotonation of a residue with an alkaline pKa and associated with covalent binding of DHA to the protein. In addition, inactivation of hexokinase decreased or increased, respectively, in the presence of the substrates glucose or MgATP. Finally, amino acid analysis of the DHA-modified hexokinase revealed a decrease of cysteine residues.Taken together, the above results are consistent with the possibility that covalent binding of the reagent with a thiol group of cysteine is a critical event for the DHA-mediated loss of hexokinase activity.


Iubmb Life | 2000

Essential Role of the Mitochondrial Respiratory Chain in Peroxynitrite‐Induced Strand Scission of Genomic DNA

Andrea Guidarelli; Ilaria Tommasini; Mara Fiorani; Orazio Cantoni

A large body of experimental evidence suggests that DNA damage and cytotoxicity mediated by peroxynitrite are linked by a causal relationship and important events in various pathological conditions. In the present study, we investigated the mechanism whereby peroxynitrite causes DNA single strand breakage in intact cells and found that the respiratory chain plays a pivotal role in this response. In particular, peroxynitrite mediates inhibition of complex III and, under these conditions, electrons are directly transferred from ubisemiquinone to molecular oxygen. Hydrogen peroxide produced by the dismutation of superoxides is the species mediating the peroxynitrite‐dependent DNA cleavage.


Journal of Chromatography A | 1994

Simultaneous high-performance capillary electrophoretic determination of reduced and oxidized glutathione in red blood cells in the femtomole range

Giovanni Piccoli; Mara Fiorani; Beatrice Biagiarelli; Francesco Palma; Lucia Potenza; Antonella Amicucci; Vilberto Stocchi

This paper describes a high-performance capillary electrophoretic (HPCE) method which allows a quick, simultaneous and quantitative determination of reduced (GSH) and oxidized (GSSG) glutathione in mammalian red blood cells using a Supelco-bonded hydrophilic phase capillary CElect-P150. The extraction procedure of GSH and GSSG from erythrocytes using Microcon-10 membranes is very simple and allows a correct evaluation of these compounds present in the red blood cells. Furthermore, the HPCE method does not require removal of the excess N-ethylmaleimide used to block the glutathione in its reduced state, making the simultaneous evaluation of GSH and GSSG possible in a very short time (ca. 4 min), with a sensitivity at femtomole level.

Collaboration


Dive into the Mara Fiorani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge