Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marbin Pineda is active.

Publication


Featured researches published by Marbin Pineda.


Cancer Research | 2013

The Exomes of the NCI-60 Panel: A Genomic Resource for Cancer Biology and Systems Pharmacology

Ogan D. Abaan; Eric C. Polley; Sean Davis; Yuelin J. Zhu; Sven Bilke; Robert L. Walker; Marbin Pineda; Yevgeniy Gindin; Yuan Jiang; William C. Reinhold; Susan Holbeck; Richard M. Simon; James H. Doroshow; Yves Pommier; Paul S. Meltzer

The NCI-60 cell lines are the most frequently studied human tumor cell lines in cancer research. This panel has generated the most extensive cancer pharmacology database worldwide. In addition, these cell lines have been intensely investigated, providing a unique platform for hypothesis-driven research focused on enhancing our understanding of tumor biology. Here, we report a comprehensive analysis of coding variants in the NCI-60 panel of cell lines identified by whole exome sequencing, providing a list of possible cancer specific variants for the community. Furthermore, we identify pharmacogenomic correlations between specific variants in genes such as TP53, BRAF, ERBBs, and ATAD5 and anticancer agents such as nutlin, vemurafenib, erlotinib, and bleomycin showing one of many ways the data could be used to validate and generate novel hypotheses for further investigation. As new cancer genes are identified through large-scale sequencing studies, the data presented here for the NCI-60 will be an invaluable resource for identifying cell lines with mutations in such genes for hypothesis-driven research. To enhance the utility of the data for the greater research community, the genomic variants are freely available in different formats and from multiple sources including the CellMiner and Ingenuity websites.


Cancer Research | 2010

Genome-Wide Identification of PAX3-FKHR Binding Sites in Rhabdomyosarcoma Reveals Candidate Target Genes Important for Development and Cancer

Liang Cao; Yunkai Yu; Sven Bilke; Robert L. Walker; Linnia H. Mayeenuddin; David O. Azorsa; Fan Yang; Marbin Pineda; Lee J. Helman; Paul S. Meltzer

The PAX3-FKHR fusion protein is present in a majority of alveolar rhabdomyosarcomas associated with increased aggressiveness and poor prognosis. To better understand the molecular pathogenesis of PAX3-FKHR, we carried out the first, unbiased genome-wide identification of PAX3-FKHR binding sites and associated target genes in alveolar rhabdomyosarcoma. The data shows that PAX3-FKHR binds to the same sites as PAX3 at both MYF5 and MYOD enhancers. The genome-wide analysis reveals that the PAX3-FKHR sites are (a) mostly distal to transcription start sites, (b) conserved, (c) enriched for PAX3 motifs, and (d) strongly associated with genes overexpressed in PAX3-FKHR-positive rhabdomyosarcoma cells and tumors. There is little evidence in our data set for PAX3-FKHR binding at the promoter sequences. The genome-wide analysis further illustrates a strong association between PAX3 and E-box motifs in these binding sites, suggestive of a common coregulation for many target genes. We also provide the first direct evidence that FGFR4 and IGF1R are the targets for PAX3-FKHR. The map of PAX3-FKHR binding sites provides a framework for understanding the pathogenic roles of PAX3-FKHR, as well as its molecular targets to allow a systematic evaluation of agents against this aggressive rhabdomyosarcoma.


Nature Genetics | 2014

High prevalence of MAP2K1 mutations in variant and IGHV4-34-expressing hairy-cell leukemias.

Joshua J. Waterfall; Evgeny Arons; Robert L. Walker; Marbin Pineda; Laura Roth; J. Keith Killian; Ogan D. Abaan; Sean Davis; Robert J. Kreitman; Paul S. Meltzer

To understand the genetic mechanisms driving variant and IGHV4-34–expressing hairy-cell leukemias, we performed whole-exome sequencing of leukemia samples from ten affected individuals, including six with matched normal samples. We identified activating mutations in the MAP2K1 gene (encoding MEK1) in 5 of these 10 samples and in 10 of 21 samples in a validation set (overall frequency of 15/31), suggesting potential new strategies for treating individuals with these diseases.


The American Journal of Surgical Pathology | 2013

Immunohistochemical loss of succinate dehydrogenase subunit A (SDHA) in gastrointestinal stromal tumors (GISTs) signals SDHA germline mutation.

Markku Miettinen; Jonathan Keith Killian; Zeng Feng Wang; Jerzy Lasota; Christopher Lau; Laura E. Jones; Robert L. Walker; Marbin Pineda; Yuelin Jack Zhu; Su Y. Kim; Lee J. Helman; Paul S. Meltzer

A subset (7% to 10%) of gastric gastrointestinal stromal tumors (GISTs) is notable for the immunohistochemical loss of succinate dehydrogenase (SDH) subunit B (SDHB), which signals the loss of function of the SDH complex consisting of mitochondrial inner membrane proteins. These SDH-deficient GISTs are known to be KIT/PDGFRA wild type, and most patients affected by this subset of GISTs are young. Some of these patients have germline mutations of SDH subunit genes SDHB, SDHC, or SDHD, known as Carney-Stratakis syndrome when combined with paraganglioma. More recently, germline mutations in SDH subunit A gene (SDHA) have also been reported in few patients with KIT/PDGFRA wild-type GISTs. In this study we immunohistochemically examined 127 SDHB-negative and 556 SDHB-positive gastric GISTs and 261 SDHB-positive intestinal GISTs for SDHA expression using a mouse monoclonal antibody 2E3 (Abcam). Cases with available DNA were tested for SDHA, SDHB, SDHC, and SDHD gene mutations using a hybridization-based custom capture next-generation sequencing assay. A total of 36 SDHA-negative GISTs (28%) were found among 127 SDHB-negative gastric GISTs. No SDHB-positive GIST was SDHA negative. Among 7 SDHA-negative tumors analyzed, there were 7 SDHA mutants, most germline. A second hit indicating biallelic inactivation of SDHA was present in 6 of those cases. These patients had no other SDH subunit gene mutations. Among the 25 SDHA-positive, SDHB-negative GISTs analyzed, we identified 3 SDHA mutations (1 germline), and 11 SDHB, SDHC, or SDHD mutations (mostly germline), and 11 patients with no SDH mutations. Compared with patients with SDHA-positive GISTs, those with SDHA-negative GISTs had an older median age (34 vs. 21 y), lower female to male ratio (1.8 vs. 3.1) but similar mitotic counts and median tumor sizes, with a slow course of disease in most cases, despite a slightly higher rate of liver metastases. SDHA-negative GISTs comprise approximately 30% of SDHB-negative/SDH-deficient GISTs, and SDHA loss generally correlates with SDHA mutations.


Science Translational Medicine | 2014

Recurrent epimutation of SDHC in gastrointestinal stromal tumors

J. Keith Killian; Markku Miettinen; Robert L. Walker; Yonghong Wang; Yuelin Jack Zhu; Joshua J. Waterfall; Natalia Noyes; Parvathy Retnakumar; Zhiming Yang; William I. Smith; M. Scott Killian; C. Christopher Lau; Marbin Pineda; Jennifer Walling; Holly Stevenson; Carly Smith; Zengfeng Wang; Jerzy Lasota; Su Young Kim; Sosipatros A. Boikos; Lee J. Helman; Paul S. Meltzer

Methylation of the SDH gene explains the loss of SDH gene expression in SDH wild-type gastrointestinal stromal tumors. All Roads Lead to Loss of Expression Gastrointestinal stromal tumors are the most common mesenchymal tumors in the gastrointestinal tract, and they can occur in isolation or as part of a constellation of cancers known as Carney triad. A subtype of this cancer, characterized by lack of expression in a gene called SDH, is not well understood and lacks a specific treatment, and this is the type that most commonly occurs in children. Now, Killian et al. have identified methylation of the SDH gene in patients with SDH-deficient gastrointestinal stromal tumors who lack mutations in the SDH gene. This finding provides a common link explaining the pathogenesis of these SDH-deficient tumors, including many of the ones associated with Carney triad. Succinate dehydrogenase (SDH) is a conserved effector of cellular metabolism and energy production, and loss of SDH function is a driver mechanism in several cancers. SDH-deficient gastrointestinal stromal tumors (dSDH GISTs) collectively manifest similar phenotypes, including hypermethylated epigenomic signatures, tendency to occur in pediatric patients, and lack of KIT/PDGFRA mutations. dSDH GISTs often harbor deleterious mutations in SDH subunit genes (SDHA, SDHB, SDHC, and SDHD, termed SDHx), but some are SDHx wild type (WT). To further elucidate mechanisms of SDH deactivation in SDHx-WT GIST, we performed targeted exome sequencing on 59 dSDH GISTs to identify 43 SDHx-mutant and 16 SDHx-WT cases. Genome-wide DNA methylation and expression profiling exposed SDHC promoter–specific CpG island hypermethylation and gene silencing in SDHx-WT dSDH GISTs [15 of 16 cases (94%)]. Six of 15 SDHC-epimutant GISTs occurred in the setting of the multitumor syndrome Carney triad. We observed neither SDHB promoter hypermethylation nor large deletions on chromosome 1q in any SDHx-WT cases. Deep genome sequencing of a 130-kbp (kilo–base pair) window around SDHC revealed no recognizable sequence anomalies in SDHC-epimutant tumors. More than 2000 benign and tumor reference tissues, including stem cells and malignancies with a hypermethylator epigenotype, exhibit solely a non-epimutant SDHC promoter. Mosaic constitutional SDHC promoter hypermethylation in blood and saliva from patients with SDHC-epimutant GIST implicates a postzygotic mechanism in the establishment and maintenance of SDHC epimutation. The discovery of SDHC epimutation provides a unifying explanation for the pathogenesis of dSDH GIST, whereby loss of SDH function stems from either SDHx mutation or SDHC epimutation.


International Journal of Cancer | 2008

Polymorphisms in DNA repair genes, ionizing radiation exposure and risk of breast cancer in U.S. Radiologic technologists

Parveen Bhatti; Jeffery P. Struewing; Bruce H. Alexander; Michael Hauptmann; Laura Bowen; Lutecia H. Mateus-Pereira; Marbin Pineda; Steven L. Simon; Robert M. Weinstock; Marvin Rosenstein; Marilyn Stovall; Dale L. Preston; Martha S. Linet; Michele M. Doody; Alice J. Sigurdson

High‐dose ionizing radiation exposure to the breast and rare autosomal dominant genes have been linked with increased breast cancer risk, but the role of low‐to‐moderate doses from protracted radiation exposure in breast cancer risk and its potential modification by polymorphisms in DNA repair genes has not been previously investigated among large numbers of radiation‐exposed women with detailed exposure data. Using carefully reconstructed estimates of cumulative breast doses from occupational and personal diagnostic ionizing radiation, we investigated the potential modification of radiation‐related breast cancer risk by 55 candidate single nucleotide polymorphisms in 17 genes involved in base excision or DNA double‐strand break repair among 859 cases and 1083 controls from the United States Radiologic Technologists (USRT) cohort. In multivariable analyses, WRN V114I (rs2230009) significantly modified the association between cumulative occupational breast dose and risk of breast cancer (adjusted for personal diagnostic exposure) (p = 0.04) and BRCA1 D652N (rs4986850), PRKDC IVS15 + 6C > T (rs1231202), PRKDC IVS34 + 39T > C (rs8178097) and PRKDC IVS31 − 634C > A (rs10109984) significantly altered the personal diagnostic radiation exposure‐response relationship (adjusted for occupational dose) (p ≤ 0.05). None of the remaining 50 SNPs significantly modified breast cancer radiation dose‐response relationships. The USRT genetic study provided a unique opportunity to examine the joint effects of common genetic variation and ionizing radiation exposure on breast cancer risk using detailed occupational and personal diagnostic exposure data. The suggestive evidence found for modification of radiation‐related breast cancer risk for 5 of the 55 SNPs evaluated requires confirmation in larger studies of women with quantified radiation breast doses in the low‐to‐moderate range.


Nature Genetics | 2014

A specific missense mutation in GTF2I occurs at high frequency in thymic epithelial tumors

Iacopo Petrini; Paul S. Meltzer; In Kyu Kim; Marco Lucchi; Kang Seo Park; Gabriella Fontanini; James Gao; P.A. Zucali; Fiorella Calabrese; Adolfo Favaretto; Federico Rea; Jaime Rodriguez-Canales; Robert L. Walker; Marbin Pineda; Yuelin J. Zhu; Christopher Lau; Keith Killian; Sven Bilke; Donna Voeller; Sivanesan Dakshanamurthy; Yisong Wang; Giuseppe Giaccone

We analyzed 28 thymic epithelial tumors (TETs) using next-generation sequencing and identified a missense mutation (chromosome 7 c.74146970T>A) in GTF2I at high frequency in type A thymomas, a relatively indolent subtype. In a series of 274 TETs, we detected the GTF2I mutation in 82% of type A and 74% of type AB thymomas but rarely in the aggressive subtypes, where recurrent mutations of known cancer genes have been identified. Therefore, GTF2I mutation correlated with better survival. GTF2I β and δ isoforms were expressed in TETs, and both mutant isoforms were able to stimulate cell proliferation in vitro. Thymic carcinomas carried a higher number of mutations than thymomas (average of 43.5 and 18.4, respectively). Notably, we identified recurrent mutations of known cancer genes, including TP53, CYLD, CDKN2A, BAP1 and PBRM1, in thymic carcinomas. These findings will complement the diagnostic assessment of these tumors and also facilitate development of a molecular classification and assessment of prognosis and treatment strategies.


Molecular and Cellular Biology | 2014

A p21-ZEB1 Complex Inhibits Epithelial-Mesenchymal Transition through the MicroRNA 183-96-182 Cluster

Xiao Ling Li; Toshifumi Hara; Youngeun Choi; Murugan Subramanian; Princy Francis; Sven Bilke; Robert L. Walker; Marbin Pineda; Yuelin Zhu; Yu-an Yang; Ji Luo; Lalage M. Wakefield; Thomas Brabletz; Ben Ho Park; Sudha Sharma; Dipanjan Chowdhury; Paul S. Meltzer; Ashish Lal

ABSTRACT The tumor suppressor p21 acts as a cell cycle inhibitor and has also been shown to regulate gene expression by functioning as a transcription corepressor. Here, we identified p21-regulated microRNAs (miRNAs) by sequencing small RNAs from isogenic p21+/+ and p21−/− cells. Three abundant miRNA clusters, miR-200b-200a-429, miR-200c-141, and miR-183-96-182, were downregulated in p21-deficient cells. Consistent with the known function of the miR-200 family and p21 in inhibition of the epithelial-mesenchymal transition (EMT), we observed EMT upon loss of p21 in multiple model systems. To explore a role of the miR-183-96-182 cluster in EMT, we identified its genome-wide targets and found that miR-183 and miR-96 repressed common targets, including SLUG, ZEB1, ITGB1, and KLF4. Reintroduction of miR-200, miR-183, or miR-96 in p21−/− cells inhibited EMT, cell migration, and invasion. Conversely, antagonizing miR-200 and miR-183-96-182 cluster miRNAs in p21+/+ cells increased invasion and elevated the levels of VIM, ZEB1, and SLUG mRNAs. Furthermore, we found that p21 forms a complex with ZEB1 at the miR-183-96-182 cluster promoter to inhibit transcriptional repression of this cluster by ZEB1, suggesting a reciprocal feedback loop.


Genome Research | 2013

Oncogenic ETS fusions deregulate E2F3 target genes in Ewing sarcoma and prostate cancer

Sven Bilke; Raphaela Schwentner; Fan Yang; Maximilian Kauer; Gunhild Jug; Robert L. Walker; Sean Davis; Yuelin J. Zhu; Marbin Pineda; Paul S. Meltzer; Heinrich Kovar

Deregulated E2F transcription factor activity occurs in the vast majority of human tumors and has been solidly implicated in disturbances of cell cycle control, proliferation, and apoptosis. Aberrant E2F regulatory activity is often caused by impairment of control through pRB function, but little is known about the interplay of other oncoproteins with E2F. Here we show that ETS transcription factor fusions resulting from disease driving rearrangements in Ewing sarcoma (ES) and prostate cancer (PC) are one such class of oncoproteins. We performed an integrative study of genome-wide DNA-binding and transcription data in EWSR1/FLI1 expressing ES and TMPRSS2/ERG containing PC cells. Supported by promoter activity and mutation analyses, we demonstrate that a large fraction of E2F3 target genes are synergistically coregulated by these aberrant ETS proteins. We propose that the oncogenic effect of ETS fusion oncoproteins is in part mediated by the disruptive effect of the E2F-ETS interaction on cell cycle control. Additionally, a detailed analysis of the regulatory targets of the characteristic EWSR1/FLI1 fusion in ES identifies two functionally distinct gene sets. While synergistic regulation in concert with E2F in the promoter of target genes has a generally activating effect, EWSR1/FLI1 binding independent of E2F3 is predominantly associated with repressed differentiation genes. Thus, EWSR1/FLI1 appears to promote oncogenesis by simultaneously promoting cell proliferation and perturbing differentiation.


Proceedings of the National Academy of Sciences of the United States of America | 2015

The CDX1–microRNA-215 axis regulates colorectal cancer stem cell differentiation

Matthew F. Jones; Toshifumi Hara; Princy Francis; Xiao Ling Li; Sven Bilke; Yuelin Zhu; Marbin Pineda; Murugan Subramanian; Walter F. Bodmer; Ashish Lal

Significance In the colon, stem cell self-renewal and multipotency is regulated by the polycomb complex protein BMI1, among other genes. Differentiation is regulated by the transcription factor caudal-type homeobox 1 (CDX1), expression of which coincides with repression of BMI1. Colorectal cancer stem cells (CSCs) express BMI1 but not CDX1. Tumors that silence CDX1 have a higher proportion of CSCs and an undifferentiated histology, whereas aberrant CDX1 expression is associated with intestinal metaplasias such as Barretts esophagus. We have identified microRNA-215 (miR-215) as a target of CDX1 in colon cancer that mediates repression of BMI1. MiR-215 operates downstream of CDX1 to promote differentiation and inhibit stemness. In combination with recent advances in the therapeutic uses of small RNAs, miR-215 could offer a novel method to specifically target CSCs. The transcription factor caudal-type homeobox 1 (CDX1) is a key regulator of differentiation in the normal colon and in colorectal cancer (CRC). CDX1 activates the expression of enterocyte genes, but it is not clear how the concomitant silencing of stem cell genes is achieved. MicroRNAs (miRNAs) are important mediators of gene repression and have been implicated in tumor suppression and carcinogenesis, but the roles of miRNAs in differentiation, particularly in CRC, remain poorly understood. Here, we identified microRNA-215 (miR-215) as a direct transcriptional target of CDX1 by using high-throughput small RNA sequencing to profile miRNA expression in two pairs of CRC cell lines: CDX1-low HCT116 and HCT116 with stable CDX1 overexpression, and CDX1-high LS174T and LS174T with stable CDX1 knockdown. Validation of candidate miRNAs identified by RNA-seq in a larger cell-line panel revealed miR-215 to be most significantly correlated with CDX1 expression. Quantitative ChIP–PCR and promoter luciferase assays confirmed that CDX1 directly activates miR-215 transcription. miR-215 expression is depleted in FACS-enriched cancer stem cells compared with unsorted samples. Overexpression of miR-215 in poorly differentiated cell lines causes a decrease in clonogenicity, whereas miR-215 knockdown increases clonogenicity and impairs differentiation in CDX1-high cell lines. We identified the genome-wide targets of miR-215 and found that miR-215 mediates the repression of cell cycle and stemness genes downstream of CDX1. In particular, the miR-215 target gene BMI1 has been shown to promote stemness and self-renewal and to vary inversely with CDX1. Our work situates miR-215 as a link between CDX1 expression and BMI1 repression that governs differentiation in CRC.

Collaboration


Dive into the Marbin Pineda's collaboration.

Top Co-Authors

Avatar

Paul S. Meltzer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert L. Walker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sven Bilke

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sean Davis

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yuelin J. Zhu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Princy Francis

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alice J. Sigurdson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge