Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc A. Hampton is active.

Publication


Featured researches published by Marc A. Hampton.


Advances in Colloid and Interface Science | 2010

Nanobubbles and the Nanobubble Bridging Capillary Force

Marc A. Hampton; Anh V. Nguyen

Interactions between hydrophobic surfaces at nanometer separation distances in aqueous solutions are important in a number of biological and industrial processes. Force spectroscopy studies, most notably with the atomic force microscope and surface-force apparatus, have found the existence of a long range hydrophobic attractive force between hydrophobic surfaces in aqueous conditions that cannot be explained by classical colloidal science theories. Numerous mechanisms have been proposed for the hydrophobic force, but in many cases the force is an artifact due to the accumulation of submicroscopic bubbles at the liquid-hydrophobic solid interface, the so called nanobubbles. The coalescence of nanobubbles as hydrophobic surfaces approach forms a gaseous capillary bridge, and thus a capillary force. The existence of nanobubbles has been highly debated over the last 15 years. To date, experimental evidence is sound but a theoretical understanding is still lacking. It is the purpose of this review to bring together the many experimental results on nanobubbles and the resulting capillary force in order to clarify these phenomena. A review of pertinent nanobubble stability and formation theories is also presented.


Journal of Colloid and Interface Science | 2011

Particle interactions in kaolinite suspensions and corresponding aggregate structures

Vishal Gupta; Marc A. Hampton; Jason R. Stokes; Anh V. Nguyen; Jan D. Miller

The surface charge densities of the silica face surface and the alumina face surface of kaolinite particles, recently determined from surface force measurements using atomic force microscopy, show a distinct dependence on the pH of the system. The silica face was found to be negatively charged at pH>4, whereas the alumina face surface was found to be positively charged at pH<6, and negatively charged at pH>8. The surface charge densities of the silica face and the alumina face were utilized in this study to determine the interaction energies between different surfaces of kaolinite particles. Results indicate that the silica face-alumina face interaction is dominant for kaolinite particle aggregation at low pH. This face-face association increases the stacking of kaolinite layers, and thereby promotes the edge-face (edge-silica face and edge-alumina face) and face-face (silica face-alumina face) associations with increasing pH, and hence the maximum shear-yield stress at pH 5-5.5. With further increase in pH, the face-face and edge-face association decreases due to increasing surface charge density on the silica face and the edge surfaces, and decreasing surface charge density on the alumina face. At high pH, all kaolinite surfaces become negatively charged, kaolinite particles are dispersed, and the suspension is stabilized. The face-face association at low pH has been confirmed from cryo-SEM images of kaolinite aggregates taken from suspension which show that the particles are mostly organized in a face-face and edge-face manner. At higher pH conditions, the cryo-SEM images of the kaolinite aggregates reveal a lower degree of consolidation and the edge-edge association is evident.


Langmuir | 2013

Nanobubbles Do Not Sit Alone at the Solid–Liquid Interface

Hong Peng; Marc A. Hampton; Anh V. Nguyen

The unexpected stability and anomalous contact angle of gaseous nanobubbles at the hydrophobic solid-liquid interface has been an issue of debate for almost two decades. In this work silicon-nitride tipped AFM cantilevers are used to probe the highly ordered pyrolytic graphite (HOPG)-water interface with and without solvent-exchange (a common nanobubble production method). Without solvent-exchange the force obtained by the single force and force mapping techniques is consistent over the HOPG atomic layers and described by DLVO theory (strong EDL repulsion). With solvent-exchange the force is non-DLVO (no EDL repulsion) and the range of the attractive jump-in (>10 nm) over the surface is grouped into circular areas of longer range, consistent with nanobubbles, and the area of shorter range. The non-DLVO nature of the area between nanobubbles suggests that the interaction is no longer between a silicon-nitride tip and HOPG. Interfacial gas enrichment (IGE) covering the entire area between nanobubbles is suggested to be responsible for the non-DLVO forces. The absence of EDL repulsion suggests that both IGE and nanobubbles are not charged. The coexistence of nanobubbles and IGE provides further evidence of nanobubble stability by dynamic equilibrium. The IGE cannot be removed by contact mode scanning of a cantilever tip in pure water, but in a surfactant (SDS) solution the mechanical action of the tip and the chemical action of the surfactant molecules can successfully remove the enrichment. Strong EDL repulsion between the tip and nanobubbles/IGE in surfactant solutions is due to the polar heads of the adsorbed surfactant molecules.


Journal of Colloid and Interface Science | 2008

Effect of alcohol-water exchange and surface scanning on nanobubbles and the attraction between hydrophobic surfaces

Marc A. Hampton; Bogdan C. Donose; Anh V. Nguyen

Atomic force microscopy (AFM) was used to examine how different alcohols affect the hydrophobic attraction between a hydrophobic silica colloidal probe and a hydrophobic silica wafer. The experiments were performed in water and in water after rinsing alcohol (methanol, ethanol, or 1-propanol) throughout the AFM system. In all three cases the range of the attractive force increased after alcohol-water exchange, with 1-propanol showing the largest increase in range followed by ethanol and methanol. Additionally, experiments were performed before and after scanning the flat substrate with the colloidal probe. The range of the attractive force substantially increased with increasing scanning area. The attraction was explained by nanobubble bridging with a capillary force model with constant bridge volume proposed. The bridge volume (constant during each of the force curve measurements), contact angle and rupture distance were also determined for different scan sizes. The correlation between the rupture distance and bridge volume agreed with the available prediction.


Langmuir | 2008

Anomalous ion effects on rupture and lifetime of aqueous foam films formed from monovalent salt solutions up to saturation concentration

Stoyan I. Karakashev; Phong Thanh Nguyen; Roumen Tsekov; Marc A. Hampton; Anh V. Nguyen

We report the effects of ions on rupture and lifetime of aqueous foam films formed from sodium chloride (NaCl), lithium chloride (LiCl), sodium acetate (NaAc), and sodium chlorate (NaClO 3) using microinterferometry. In the case of NaCl and LiCl, the foam films prepared from the salt solutions below 0.1 M were unstable they thinned until rupturing. The film lifetime measured from the first interferogram (appearing at a film thickness on the order of 500 nm) until the film rupture was only a second or so. However, relatively long lasting and nondraining films prepared from salt solutions above 0.1 M were observed. The film lifetime was significantly longer by 1 to 2 orders of magnitude, i.e., from 10 to 100 s. Importantly, both the film lifetime and the (average) thickness of the nondraining films increased with increasing salt concentration. This effect has not been observed with foam films stabilized by surfactants. The film lifetime and thickness also increased with increasing film radius. The films exhibited significant surface corrugations. The films with large radii often contained standing dimples. There was a critical film radius below which the films thinned until rupturing. In the cases of NaAc and NaClO 3, the films were unstable at all radii and salt concentrations they thinned until rupturing, ruling out the effect of solution viscosity on stabilizing the films.


Water Research | 2012

The effect of zeolite treatment by acids on sodium adsorption ratio of coal seam gas water

Xiaoyu Wang; Orhan Ozdemir; Marc A. Hampton; Anh V. Nguyen; D.D. Do

Many coal seam gas (CSG) waters contain a sodium ion concentration which is too high relative to calcium and magnesium ions for environment acceptance. Natural zeolites can be used as a cheap and effective method to control sodium adsorption ratio (SAR, which is a measure of the relative preponderance of sodium to calcium and magnesium) due to its high cation exchange capacity. In this study, a natural zeolite from Queensland was examined for its potential to treat CSG water to remove sodium ions to lower SAR and reduce the pH value. The results demonstrate that acid activated zeolite at 30%wt solid ratio can reduce the sodium content from 563.0 to 182.7 ppm; the pH from 8.74 to 6.95; and SAR from 70.3 to 18.5. Based on the results of the batch experiments, the sodium adsorption capacity of the acid-treated zeolite is three times greater than that of the untreated zeolite. Both the untreated and acid-treated zeolite samples were characterized using zeta potential, surface characterization, DTA/TG and particle size distribution in order to explain their adsorption behaviours.


Langmuir | 2011

Physical and Chemical Analysis of Elemental Sulfur Formation during Galena Surface Oxidation

Marc A. Hampton; Chris Plackowski; Anh V. Nguyen

The surface oxidation of sulfide minerals, such as galena (PbS), in aqueous solutions is of critical importance in a number of applications. A comprehensive understanding of the formation of oxidation species at the galena surface is still lacking. Much controversy over the nature of these oxidation products exists. A number of oxidation pathways have been proposed, and experimental evidence for the formation of elemental sulfur, metal polysulfides, and metal-deficient lead sulfides in acidic conditions has been shown and argued. This paper provides further insight into the electrochemical behavior of galena at pH 4.5. Utilizing a novel experimental system that combines in situ electrochemical control and AC mode atomic force microscopy (AFM) surface imaging, the formation and growth of nanoscopic domains on the galena surface are detected and examined at anodic potentials. AFM phase images indicate that these domains have different material properties to the underlying galena. Continued oxidation results in nanoscopic pitting and the formation of microscopic surface domains, which are confirmed to be elemental sulfur by Raman spectroscopy. Further clarification of the presence of elemental sulfur is provided by Cryo-XPS. Polysulfide and metal-deficient sulfide could not be detected within this system.


Journal of Colloid and Interface Science | 2010

Crystal lattice imaging of the silica and alumina faces of kaolinite using atomic force microscopy.

Vishal Gupta; Marc A. Hampton; Anh V. Nguyen; Jan D. Miller

The crystal lattice images of the two faces of kaolinite (the silica face and the alumina face) have been obtained using contact-mode atomic force microscopy (AFM) under ambient conditions. Lattice resolution images reveal the hexagonal surface lattice of these two faces of kaolinite. Analysis of the silica face of kaolinite showed that the hexagonal surface lattice ring of oxygen atoms had a periodicity of 0.50±0.04nm between neighboring oxygen atoms, which is in good agreement with the surface lattice structure of the mica basal plane. The center of the hexagonal ring of oxygen atoms is vacant. Analysis of the alumina face of kaolinite showed that the hexagonal surface lattice ring of hydroxyls surround a hydroxyl in the center of the ring. The atomic spacing between neighboring hydroxyls was determined as 0.36±0.04nm. Ordering of the kaolinite particles for examination of the silica and alumina surfaces was accomplished using different substrates, a procedure previously established. Crystal lattice imaging supports previous results and independently confirms that the two faces of kaolinite have been properly identified.


Journal of Colloid and Interface Science | 2009

Systematically altering the hydrophobic nanobubble bridging capillary force from attractive to repulsive

Marc A. Hampton; Anh V. Nguyen

Atomic force microscopy (AFM) was used to examine how ethanol/water concentration affects the nanobubble bridging capillary force between a hydrophobic silica colloidal probe and a hydrophobic silica wafer. Nanobubbles were produced on the solid surfaces by a previously utilised method which uses solvent-exchange and surface scanning. In pure water a strong, long range attractive force ( approximately 230 nm) with a single jump in step was measured, typical of an interaction between two nanobubbles attached to the hydrophobic surfaces. An increase in the ethanol concentration had little effect on the range of the force but dramatically reduced its magnitude. At an ethanol concentration of 40% by mass, the force became repulsive after the initial attractive jump in. Above an ethanol concentration of 40% by mass, the capillary force disappeared. The change in the force with ethanol concentration was explained using a capillary force model with constant volume and contact angle. The bridge geometry, contact angle, volume and rupture distance were determined for different ethanol concentrations.


Langmuir | 2009

Anomalous time effect on particle-bubble interactions studied by atomic force microscopy.

Elena Taran; Marc A. Hampton; Anh V. Nguyen; Phil Attard

The atomic force microscope was employed to investigate the time effect on normal interactions between a hydrophilic silica particle and an air bubble deposited onto a hydrophobic Teflon surface in pure water and 10 mM methyl isobutyl carbinol solutions. The force versus separation distance curves taken at different times after bubble generation were qualitatively compared. It has been found that the penetration distance, jump-in force, contact angle, rupture distance, force required for the film to rupture, interfacial spring constant, and bubble shape were time-dependent. The results were explained by the change of the air-water interface shape with time due to water droplet growth on the Teflon surface inside the air bubbles.

Collaboration


Dive into the Marc A. Hampton's collaboration.

Top Co-Authors

Avatar

Anh V. Nguyen

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor Rudolph

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Longbin Huang

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Taran

Australian National Fabrication Facility

View shared research outputs
Top Co-Authors

Avatar

Peng Li

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge