Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc A. Sze is active.

Publication


Featured researches published by Marc A. Sze.


American Journal of Respiratory and Critical Care Medicine | 2012

The Lung Tissue Microbiome in Chronic Obstructive Pulmonary Disease

Marc A. Sze; Pedro A. Dimitriu; Shizu Hayashi; W. Mark Elliott; John E. McDonough; John V. Gosselink; Joel D. Cooper; Don D. Sin; William W. Mohn; James C. Hogg

RATIONALE Based on surface brushings and bronchoalveolar lavage fluid, Hilty and coworkers demonstrated microbiomes in the human lung characteristic of asthma and chronic obstructive pulmonary disease (COPD), which have now been confirmed by others. OBJECTIVES To extend these findings to human lung tissue samples. METHODS DNA from lung tissue samples was obtained from nonsmokers (n = 8); smokers without COPD (n = 8); patients with very severe COPD (Global Initiative for COPD [GOLD] 4) (n = 8); and patients with cystic fibrosis (CF) (n = 8). The latter served as a positive control, with sterile water as a negative control. All bacterial community analyses were based on polymerase chain reaction amplifying 16S rRNA gene fragments. Total bacterial populations were measured by quantitative polymerase chain reaction and bacterial community composition was assessed by terminal restriction fragment length polymorphism analysis and pyrotag sequencing. MEASUREMENT AND MAIN RESULTS Total bacterial populations within lung tissue were small (20-1,252 bacterial cells per 1,000 human cells) but greater in all four sample groups versus the negative control group (P < 0.001). Terminal restriction fragment length polymorphism analysis and sequencing distinguished three distinct bacterial community compositions: one common to the nonsmoker and smoker groups, a second to the GOLD 4 group, and the third to the CF-positive control group. Pyrotag sequencing identified greater than 1,400 unique bacterial sequences and showed an increase in the Firmicutes phylum in GOLD 4 patients versus all other groups (P < 0.003) attributable to an increase in the Lactobacillus genus (P < 0.0007). CONCLUSIONS There is a detectable bacterial community within human lung tissue that changes in patients with very severe COPD.


Mbio | 2016

Looking for a Signal in the Noise: Revisiting Obesity and the Microbiome

Marc A. Sze; Patrick D. Schloss

ABSTRACT Two recent studies have reanalyzed previously published data and found that when data sets were analyzed independently, there was limited support for the widely accepted hypothesis that changes in the microbiome are associated with obesity. This hypothesis was reconsidered by increasing the number of data sets and pooling the results across the individual data sets. The preferred reporting items for systematic reviews and meta-analyses guidelines were used to identify 10 studies for an updated and more synthetic analysis. Alpha diversity metrics and the relative risk of obesity based on those metrics were used to identify a limited number of significant associations with obesity; however, when the results of the studies were pooled by using a random-effect model, significant associations were observed among Shannon diversity, the number of observed operational taxonomic units, Shannon evenness, and obesity status. They were not observed for the ratio of Bacteroidetes and Firmicutes or their individual relative abundances. Although these tests yielded small P values, the difference between the Shannon diversity indices of nonobese and obese individuals was 2.07%. A power analysis demonstrated that only one of the studies had sufficient power to detect a 5% difference in diversity. When random forest machine learning models were trained on one data set and then tested by using the other nine data sets, the median accuracy varied between 33.01 and 64.77% (median, 56.68%). Although there was support for a relationship between the microbial communities found in human feces and obesity status, this association was relatively weak and its detection is confounded by large interpersonal variation and insufficient sample sizes. IMPORTANCE As interest in the human microbiome grows, there is an increasing number of studies that can be used to test numerous hypotheses across human populations. The hypothesis that variation in the gut microbiota can explain or be used to predict obesity status has received considerable attention and is frequently mentioned as an example of the role of the microbiome in human health. Here we assessed this hypothesis by using 10 independent studies and found that although there is an association, it is smaller than can be detected by most microbiome studies. Furthermore, we directly tested the ability to predict obesity status on the basis of the composition of an individual’s microbiome and found that the median classification accuracy is between 33.01 and 64.77%. This type of analysis can be used to design future studies and expanded to explore other hypotheses. As interest in the human microbiome grows, there is an increasing number of studies that can be used to test numerous hypotheses across human populations. The hypothesis that variation in the gut microbiota can explain or be used to predict obesity status has received considerable attention and is frequently mentioned as an example of the role of the microbiome in human health. Here we assessed this hypothesis by using 10 independent studies and found that although there is an association, it is smaller than can be detected by most microbiome studies. Furthermore, we directly tested the ability to predict obesity status on the basis of the composition of an individual’s microbiome and found that the median classification accuracy is between 33.01 and 64.77%. This type of analysis can be used to design future studies and expanded to explore other hypotheses.


American Journal of Respiratory and Critical Care Medicine | 2015

Host Response to the Lung Microbiome in Chronic Obstructive Pulmonary Disease

Marc A. Sze; Pedro A. Dimitriu; Masaru Suzuki; John E. McDonough; Josh D. Campbell; John R. Erb-Downward; Gary B. Huffnagle; Shizu Hayashi; W. Mark Elliott; Joel D. Cooper; Don D. Sin; Marc E. Lenburg; Avrum Spira; William W. Mohn; James C. Hogg

RATIONALE The relatively sparse but diverse microbiome in human lungs may become less diverse in chronic obstructive pulmonary disease (COPD). This article examines the relationship of this microbiome to emphysematous tissue destruction, number of terminal bronchioles, infiltrating inflammatory cells, and host gene expression. METHODS Culture-independent pyrosequencing microbiome analysis was used to examine the V3-V5 regions of bacterial 16S ribosomal DNA in 40 samples of lung from 5 patients with COPD (Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage 4) and 28 samples from 4 donors (controls). A second protocol based on the V1-V3 regions was used to verify the bacterial microbiome results. Within lung tissue samples the microbiome was compared with results of micro-computed tomography, infiltrating inflammatory cells measured by quantitative histology, and host gene expression. MEASUREMENTS AND MAIN RESULTS Ten operational taxonomic units (OTUs) was found sufficient to discriminate between control and GOLD stage 4 lung tissue, which included known pathogens such as Haemophilus influenzae. We also observed a decline in microbial diversity that was associated with emphysematous destruction, remodeling of the bronchiolar and alveolar tissue, and the infiltration of the tissue by CD4(+) T cells. Specific OTUs were also associated with neutrophils, eosinophils, and B-cell infiltration (P < 0.05). The expression profiles of 859 genes and 235 genes were associated with either enrichment or reductions of Firmicutes and Proteobacteria, respectively, at a false discovery rate cutoff of less than 0.1. CONCLUSIONS These results support the hypothesis that there is a host immune response to microorganisms within the lung microbiome that appears to contribute to the pathogenesis of COPD.


International Journal of Chronic Obstructive Pulmonary Disease | 2014

Bacterial microbiome of lungs in COPD.

Marc A. Sze; James C. Hogg; Don D. Sin

Chronic obstructive pulmonary disease (COPD) is currently the third leading cause of death in the world. Although smoking is the main risk factor for this disease, only a minority of smokers develop COPD. Why this happens is largely unknown. Recent discoveries by the human microbiome project have shed new light on the importance and richness of the bacterial microbiota at different body sites in human beings. The microbiota plays a particularly important role in the development and functional integrity of the immune system. Shifts or perturbations in the microbiota can lead to disease. COPD is in part mediated by dysregulated immune responses to cigarette smoke and other environmental insults. Although traditionally the lung has been viewed as a sterile organ, by using highly sensitive genomic techniques, recent reports have identified diverse bacterial communities in the human lung that may change in COPD. This review summarizes the current knowledge concerning the lung microbiota in COPD and its potential implications for pathogenesis of the disease.


Journal of Immunology | 2012

Atypical Activation of the Unfolded Protein Response in Cystic Fibrosis Airway Cells Contributes to p38 MAPK-Mediated Innate Immune Responses

Christoph J. Blohmke; Matthew L. Mayer; Anthony C. Tang; Aaron F. Hirschfeld; Christopher D. Fjell; Marc A. Sze; Reza Falsafi; Shirley Wang; Karolynn J. Hsu; Mark A. Chilvers; James C. Hogg; Robert E. W. Hancock; Stuart E. Turvey

Inflammatory lung disease is the major cause of morbidity and mortality in cystic fibrosis (CF); understanding what produces dysregulated innate immune responses in CF cells will be pivotal in guiding the development of novel anti-inflammatory therapies. To elucidate the molecular mechanisms that mediate exaggerated inflammation in CF following TLR signaling, we profiled global gene expression in immortalized human CF and non-CF airway cells at baseline and after microbial stimulation. Using complementary analysis methods, we observed a signature of increased stress levels in CF cells, specifically characterized by endoplasmic reticulum (ER) stress, the unfolded protein response (UPR), and MAPK signaling. Analysis of ER stress responses revealed an atypical induction of the UPR, characterized by the lack of induction of the PERK–eIF2α pathway in three complementary model systems: immortalized CF airway cells, fresh CF blood cells, and CF lung tissue. This atypical pattern of UPR activation was associated with the hyperinflammatory phenotype in CF cells, as deliberate induction of the PERK–eIF2α pathway with salubrinal attenuated the inflammatory response to both flagellin and Pseudomonas aeruginosa. IL-6 production triggered by ER stress and microbial stimulation were both dependent on p38 MAPK activity, suggesting a molecular link between both signaling events. These data indicate that atypical UPR activation fails to resolve the ER stress in CF and sensitizes the innate immune system to respond more vigorously to microbial challenge. Strategies to restore ER homeostasis and normalize the UPR activation profile may represent a novel therapeutic approach to minimize lung-damaging inflammation in CF.


PLOS ONE | 2014

Changes in the bacterial microbiota in gut, blood, and lungs following acute LPS instillation into mice lungs

Marc A. Sze; Masashi Tsuruta; Shun Wei Julia Yang; Yeni Oh; S. F. Paul Man; James C. Hogg; Don D. Sin

Introduction Previous reports have shown that the gastrointestinal (GI) bacterial microbiota can have profound effects on the lungs, which has been described as the “gut-lung axis”. However, whether a “lung-gut” axis exists wherein acute lung inflammation perturbs the gut and blood microbiota is unknown. Methods Adult C57/Bl6 mice were exposed to one dose of LPS or PBS instillation (n = 3 for each group) directly into lungs. Bacterial microbiota of the bronchoalveolar lavage fluid, blood, and cecum were determined using 454 pyrotag sequencing and quantitative polymerase chain reaction (qPCR) at 4 through 168 hours post-instillation. We then investigated the effects of oral neomycin and streptomycin (n = 8) on the microbiota at 4 and 24 hours post LPS instillation versus control treatment (n = 5 at baseline and 4 hours, n = 7 at 24 hours). Results At 24 hours post LPS instillation, the total bacterial count was significantly increased in the cecum (P<0.05); whereas the total bacterial count in blood was increased at 4, 48, and 72 hours (P<0.05). Antibiotic treatment reduced the total bacteria in blood but not in the cecum. The increase in total bacteria in the blood correlated with Phyllobacteriaceae OTU 40 and was significantly reduced in the blood for both antibiotic groups (P<0.05). Conclusion LPS instillation in lungs leads to acute changes in the bacterial microbiota in the blood and cecum, which can be modulated with antibiotics.


PLOS ONE | 2014

A Comparison between Droplet Digital and Quantitative PCR in the Analysis of Bacterial 16S Load in Lung Tissue Samples from Control and COPD GOLD 2

Marc A. Sze; Meysam Abbasi; James C. Hogg; Don D. Sin

Background Low biomass in the bacterial lung tissue microbiome utilizes quantitative PCR (qPCR) 16S bacterial assays at their limit of detection. New technology like droplet digital PCR (ddPCR) could allow for higher sensitivity and accuracy of quantification. These attributes are needed if specific bacteria within the bacterial lung tissue microbiome are to be evaluated as potential contributors to diseases such as chronic obstructive pulmonary disease (COPD). We hypothesize that ddPCR is better at quantifying the total bacterial load in lung tissue versus qPCR. Methods Control (n = 16) and COPD GOLD 2 (n = 16) tissue samples were obtained from patients who underwent lung resection surgery, were cut on a cryotome, and sections were assigned for use in quantitative histology or for DNA extraction. qPCR and ddPCR were performed on these samples using primers spanning the V2 region on the 16S rRNA gene along with negative controls. Total 16S counts were compared between the two methods. Both methods were assessed for correlations with quantitative histology measurements of the tissue. Results There was no difference in the average total 16S counts (P>0.05) between the two methods. However, the negative controls contained significantly lower counts in the ddPCR (0.55 ± 0.28 16S/uL) than in the qPCR assay (1.00 ± 0.70 16S copies) (P <0.05). The coefficient of variation was significantly lower for the ddPCR assay (0.18 ± 0.14) versus the qPCR assay (0.62 ± 0.29) (P<0.05). Conclusion Overall the ddPCR 16S assay performed better by reducing the background noise in 16S of the negative controls compared with 16S qPCR assay.


Thorax | 2015

The relationship between Helicobacter pylori seropositivity and COPD

Marc A. Sze; Yu Wei Roy Chen; Sheena Tam; Donald P. Tashkin; Robert A. Wise; John E. Connett; S. F. Paul Man; Don D. Sin

Rationale Chronic systemic infections such as those with Helicobacter pylori (H. pylori) may contribute to the evolution and progression of chronic obstructive pulmonary disease (COPD). Using data from the Lung Health Study (LHS), we determined the relationship of H. pylori infection with the severity and progression of COPD. Methods Using an immunoassay, we measured H. pylori immunoglobulin G (IgG) antibody titres in serum samples of 4765 patients with mild-to-moderate COPD. We then determined their relationship with the individuals FEV1 and the rate of decline in FEV1 and mortality over 11 years using multiple regression analysis. Results Approximately 18% of the patients were seropositive to H. pylori and these individuals demonstrated lower FEV1 (L) values at every study visit compared with individuals who were seronegative for H. pylori (p value=0.00012). However, patients with seropositivity to H. pylori were on average 0.012 m shorter than those with seronegativity (p value=0.0015). The significant relationship between FEV1 and H. pylori seropositivity disappeared when FEV1 per cent predicted (FEV1pp) was used (p value=0.45). H. pylori seropositive individuals had greater circulating C reactive protein (CRP) levels compared with H. pylori seronegative individuals (p value=0.012), and had increased risk of cardiovascular mortality (relative risk 1.61, p=0.05). Conclusions H. pylori infection was associated with reduced lung function that is most likely due to the effect of the bacterium on lung growth earlier in life. It is also associated with systemic inflammation and increased risk of cardiovascular mortality in patients with COPD. Trial registration numbers NCT00000568 and NCT00000569.


COPD: Journal of Chronic Obstructive Pulmonary Disease | 2014

Respiratory viral detection and small airway inflammation in lung tissue of patients with stable, mild COPD.

Soraya Utokaparch; Marc A. Sze; John V. Gosselink; John E. McDonough; W. Mark Elliott; James C. Hogg; Richard G. Hegele

Abstract Background: Viral respiratory tract infections are implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). In lung tissue specimens from patients with stable, mild COPD and from control smokers without airflow obstruction, we determined the prevalence and load of nucleic acid from common respiratory viruses and concomitant inflammation of small airways measuring less than 2-mm in diameter. Methods: Frozen lung tissue obtained from patients with stable, mild COPD (n = 20) and control subjects (n = 20) underwent real-time quantitative PCR (qPCR) for 13 respiratory viruses, and quantitative histology for inflammation of small airways. The two groups were compared for viral prevalence and load, and airway inflammation. The relationship between viral load and airway inflammatory cells was also analyzed. Results: Viral nucleic acid were detected in lung tissue of 18/40 (45.0%) of the individuals studied and included seven co-infections that were characterized by a “dominant virus” contributing to most of the total measured viral load. Lung tissue of COPD patients had a significantly higher prevalence of viral nucleic acid (particularly influenza A virus), and increased inflammation of small airways by macrophages and neutrophils versus controls. In qPCR-positive individuals, linear regression analysis showed a direct correlation between viral load and airway neutrophils, and between influenza A virus load and airway macrophages. Conclusion: The lung tissue of patients with stable, mild COPD has a higher prevalence and load of respiratory viruses versus non-obstructed control subjects, and increased inflammation of small airways. Respiratory viruses may represent potential targets in COPD patient management.


BMJ Open | 2015

Loss of GD1-positive Lactobacillus correlates with inflammation in human lungs with COPD

Marc A. Sze; Soraya Utokaparch; W. Mark Elliott; James C. Hogg; Richard G. Hegele

Objectives The present study assesses the relationship between contents of GD1 (glycerol dehydratase)-positive Lactobacillus, presence of Lactobacillus and the inflammatory response measured in host lung tissue in mild to moderate chronic obstructive pulmonary disease (COPD). We hypothesise that there will be a loss of GD1 producing Lactobacillus with increasing severity of COPD and that GD1 has anti-inflammatory properties. Setting Secondary care, 1 participating centre in Vancouver, British Columbia, Canada. Participants 74 individuals who donated non-cancerous portions of their lungs or lobes removed as treatment for lung cancer (normal lung function controls (n=28), persons with mild (GOLD 1) (n=21) and moderate (GOLD 2) COPD (n=25)). Outcome measures Primary outcome measure was GD1 positivity within each group and whether or not this impacted quantitative histological measures of lung inflammation. Secondary outcome measures included Lactobacillus presence and quantification, and quantitative histological measurements of inflammation and remodelling in early COPD. Results Total bacterial count (p>0.05) and prevalence of Lactobacillus (p>0.05) did not differ between groups. However, the GD1 gene was detected more frequently in the controls (14%) than in either mild (5%) or moderate (0%) COPD (p<0.05) samples. Macrophage and neutrophil volume fractions (0.012±0.005 (mean±SD) vs 0.026±0.017 and 0.005±0.002 vs 0.015±0.014, respectively) in peripheral lung tissue were reduced in samples positive for the GD1 gene (p<0.0035). Conclusions A reduction in GD1 positivity is associated with an increased tissue immune inflammatory response in early stage COPD. There is potential for Lactobacillus to be used as a possible therapeutic, however, validation of these results need to be completed before an anti-inflammatory role of Lactobacillus in COPD can be confirmed.

Collaboration


Dive into the Marc A. Sze's collaboration.

Top Co-Authors

Avatar

James C. Hogg

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Don D. Sin

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

John V. Gosselink

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Pedro A. Dimitriu

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William W. Mohn

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. F. Paul Man

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

W. Mark Elliott

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge