Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc-André Verner is active.

Publication


Featured researches published by Marc-André Verner.


Environmental Health Perspectives | 2009

A physiologically based pharmacokinetic model for the assessment of infant exposure to persistent organic pollutants in epidemiologic studies.

Marc-André Verner; Pierre Ayotte; Gina Muckle; Michel Charbonneau; Sami Haddad

Background It has been suggested that pre- and postnatal exposure to persistent organic pollutants (POPs) can promote several adverse effects in children, such as altered neurodevelopment. Epidemiologic studies to date have relied on the analysis of biological samples drawn pre- or post-natally for exposure assessment, an approach that might not capture some key events in the toxicokinetics of POPs. Objectives We aimed to build a generic physiologically based pharmacokinetic (PBPK) modeling framework for neutral POPs to assess infant toxicokinetic profiles and to validate the model using data on POP levels measured in mothers and infants from a Northern Québec Inuit population. Methods The PBPK model developed herein was based upon a previously published model to which an infant submodel was added. Using the model and maternal blood levels at the time of delivery, exposure to 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p′-DDE), 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (p,p′-DDT), hexachlorobenzene (HCB), β-hexachlorocyclohexane (β-HCH), 2,2′,3,4,4′,5′-hexachlorobiphenyl (PCB-138), 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB-153), and 2,2′,3,4,4′,5,5′-heptachlorobiphenyl (PCB-180) in mothers was estimated to subsequently simulate infant blood, breast milk, and cord blood POP concentration. Simulations were then compared with corresponding measured levels through Spearman correlation analyses. Results Predictions were highly correlated with measured concentrations for PCB-153, PCB-180, PCB-138, HCB, and p,p′-DDE (r = 0.83–0.96). Weaker correlations were observed for p,p′-DDT and β-HCH for which levels were near the limits of detection. Conclusion This is the first study to validate a PBPK model of POPs in infants on an individual basis. This approach will reduce sampling efforts and enable the use of individualized POP toxicokinetic profiles in the epidemiologic studies of POP adverse effects on child development.


Environmental Health Perspectives | 2015

Associations of Perfluoroalkyl Substances (PFAS) with Lower Birth Weight: An Evaluation of Potential Confounding by Glomerular Filtration Rate Using a Physiologically Based Pharmacokinetic Model (PBPK)

Marc-André Verner; Anne E. Loccisano; Nils-Halvdan Morken; Miyoung Yoon; Huali Wu; Robin McDougall; Mildred Maisonet; Michele Marcus; Reiko Kishi; Chihiro Miyashita; Mei-Huei Chen; Wu-Shiun Hsieh; Melvin E. Andersen; Harvey J. Clewell; Matthew P. Longnecker

Background Prenatal exposure to perfluoroalkyl substances (PFAS) has been associated with lower birth weight in epidemiologic studies. This association could be attributable to glomerular filtration rate (GFR), which is related to PFAS concentration and birth weight. Objectives We used a physiologically based pharmacokinetic (PBPK) model of pregnancy to assess how much of the PFAS–birth weight association observed in epidemiologic studies might be attributable to GFR. Methods We modified a PBPK model to reflect the association of GFR with birth weight (estimated from three studies of GFR and birth weight) and used it to simulate PFAS concentrations in maternal and cord plasma. The model was run 250,000 times, with variation in parameters, to simulate a population. Simulated data were analyzed to evaluate the association between PFAS levels and birth weight due to GFR. We compared simulated estimates with those from a meta-analysis of epidemiologic data. Results The reduction in birth weight for each 1-ng/mL increase in simulated cord plasma for perfluorooctane sulfonate (PFOS) was 2.72 g (95% CI: –3.40, –2.04), and for perfluorooctanoic acid (PFOA) was 7.13 g (95% CI: –8.46, –5.80); results based on maternal plasma at term were similar. Results were sensitive to variations in PFAS level distributions and the strength of the GFR–birth weight association. In comparison, our meta-analysis of epidemiologic studies suggested that each 1-ng/mL increase in prenatal PFOS and PFOA levels was associated with 5.00 g (95% CI: –21.66, –7.78) and 14.72 g (95% CI: –8.92, –1.09) reductions in birth weight, respectively. Conclusion Results of our simulations suggest that a substantial proportion of the association between prenatal PFAS and birth weight may be attributable to confounding by GFR and that confounding by GFR may be more important in studies with sample collection later in pregnancy. Citation Verner MA, Loccisano AE, Morken NH, Yoon M, Wu H, McDougall R, Maisonet M, Marcus M, Kishi R, Miyashita C, Chen MH, Hsieh WS, Andersen ME, Clewell HJ III, Longnecker MP. 2015. Associations of perfluoroalkyl substances (PFAS) with lower birth weight: an evaluation of potential confounding by glomerular filtration rate using a physiologically based pharmacokinetic model (PBPK). Environ Health Perspect 123:1317–1324; http://dx.doi.org/10.1289/ehp.1408837


Environmental Health Perspectives | 2008

Physiologically based pharmacokinetic modeling of persistent organic pollutants for lifetime exposure assessment: a new tool in breast cancer epidemiologic studies.

Marc-André Verner; Michel Charbonneau; Lizbeth López-Carrillo; Sami Haddad

Background Despite experimental evidence, most epidemiologic studies to date have not supported an association between exposure to persistent organic pollutants (POP) and breast cancer incidence in humans. This may be attributable to difficulties in estimating blood/tissue POP concentration at critical time periods of carcinogenesis. Objectives In this work we aimed to develop a tool to estimate lifetime POP blood/tissue exposure and levels during any hypothesized time window of susceptibility in breast cancer development. Methods We developed a physiologically based pharmacokinetic (PBPK) model that can account for any given physiologic lifetime history. Using data on pregnancies, height, weight, and age, the model estimates the values of physiologic parameters (e.g., organ volume, composition, and blood flow) throughout a woman’s entire life. We assessed the lifetime toxicokinetic profile (LTP) for various exposure scenarios and physiologic factors (i.e., breast-feeding, growth, pregnancy, lactation, and weight changes). Results Simulations for three POPs [hexachlorobenzene, polychlorinated biphenyl (PCB)-153, PCB-180] using different lifetime physiologic profiles showed that the same blood concentration at 55 years of age can be reached despite totally different LTP. Aside from exposure levels, lactation periods and weight profile history were shown to be the factors that had the greatest impact on the LTP. Conclusions This new lifetime PBPK model, which showed the limitations of using a single sample value obtained around the time of diagnosis for lifetime exposure assessment, will enable researchers conducting environmental epidemiology studies to reduce uncertainty linked to past POP exposure estimation and to consider exposure during time windows that are hypothesized to be mechanistically critical in carcinogenesis.


Environmental Health Perspectives | 2013

Toxicokinetic Modeling of Persistent Organic Pollutant Levels in Blood from Birth to 45 Months of Age in Longitudinal Birth Cohort Studies

Marc-André Verner; Dean Sonneborn; Kinga Lancz; Gina Muckle; Pierre Ayotte; Eric Dewailly; Anton Kočan; Lubica Palkovicova; Tomas Trnovec; Sami Haddad; Irva Hertz-Picciotto; Merete Eggesbø

Background: Despite experimental evidence that lactational exposure to persistent organic pollutants (POPs) can impact health, results from epidemiologic studies are inconclusive. Inconsistency across studies may reflect the inability of current methods to estimate children’s blood levels during specific periods of susceptibility. Objectives: We developed a toxicokinetic model to simulate blood POP levels in children from two longitudinal birth cohorts and aimed to validate it against blood levels measured at 6, 16, and 45 months of age. Methods: The model consisted of a maternal and a child lipid compartment connected through placental diffusion and breastfeeding. Simulations were carried out based on individual physiologic parameters; duration of breastfeeding; and levels of POPs measured in maternal blood at delivery, cord blood, or breast milk. Model validity was assessed through regression analyses of simulated against measured blood levels. Results: Simulated levels explained between 10% and 83% of measured blood levels depending on the cohort, the compound, the sample used to simulate children’s blood levels, and child’s age when blood levels were measured. Model accuracy was highest for estimated blood POP levels at 6 months based on maternal or cord blood levels. However, loss in model precision between the 6th and the 45th month was small for most compounds. Conclusions: Our validated toxicokinetic model can be used to estimate children’s blood POP levels in early to mid-childhood. Estimates can be used in epidemiologic studies to evaluate the impact of exposure during hypothesized postnatal periods of susceptibility on health.


Environmental Health Perspectives | 2015

Prenatal and postnatal exposure to persistent organic pollutants and Infant growth: A pooled analysis of seven european birth cohorts

Nina Iszatt; Hein Stigum; Marc-André Verner; Richard A. White; Eva Govarts; Lubica Palkovicova Murinova; Greet Schoeters; Tomas Trnovec; Juliette Legler; Fabienne Pelé; Jérémie Botton; Cécile Chevrier; Jürgen Wittsiepe; Ulrich Ranft; Stéphanie Vandentorren; Monika Kasper-Sonnenberg; Claudia Klümper; Nynke Weisglas-Kuperus; Anuschka Polder; Merete Eggesbø

Background Infant exposure to persistent organic pollutants (POPs) may contribute to obesity. However, many studies so far have been small, focused on transplacental exposure, used an inappropriate measure to assess postnatal exposure through breastfeeding if any, or did not discern between prenatal and postnatal effects. Objectives We investigated prenatal and postnatal exposure to POPs and infant growth (a predictor of obesity). Methods We pooled data from seven European birth cohorts with biomarker concentrations of polychlorinated biphenyl 153 (PCB-153) (n = 2,487), and p,p´-dichlorodiphenyldichloroethylene (p,p´-DDE) (n = 1,864), estimating prenatal and postnatal POPs exposure using a validated pharmacokinetic model. Growth was change in weight-for-age z-score between birth and 24 months. Per compound, multilevel models were fitted with either POPs total exposure from conception to 24 months or prenatal or postnatal exposure. Results We found a significant increase in growth associated with p,p´-DDE, seemingly due to prenatal exposure (per interquartile increase in exposure, adjusted β = 0.12; 95% CI: 0.03, 0.22). Due to heterogeneity across cohorts, this estimate cannot be considered precise, but does indicate that an association with infant growth is present on average. In contrast, a significant decrease in growth was associated with postnatal PCB-153 exposure (β = –0.10; 95% CI: –0.19, –0.01). Conclusion To our knowledge, this is the largest study to date of POPs exposure and infant growth, and it contains state-of-the-art exposure modeling. Prenatal p,p´-DDE was associated with increased infant growth, and postnatal PCB-153 with decreased growth at European exposure levels. Citation Iszatt N, Stigum H, Verner MA, White RA, Govarts E, Palkovicova Murinova L, Schoeters G, Trnovec T, Legler J, Pelé F, Botton J, Chevrier C, Wittsiepe J, Ranft U, Vandentorren S, Kasper-Sonnenberg M, Klümper C, Weisglas-Kuperus N, Polder A, Eggesbø M, OBELIX. 2015. Prenatal and postnatal exposure to persistent organic pollutants and infant growth: a pooled analysis of seven European birth cohorts. Environ Health Perspect 123:730–736; http://dx.doi.org/10.1289/ehp.1308005


Neurotoxicology | 2010

Alteration of infant attention and activity by polychlorinated biphenyls: unravelling critical windows of susceptibility using physiologically based pharmacokinetic modeling.

Marc-André Verner; Pierrich Plusquellec; Gina Muckle; Pierre Ayotte; Eric Dewailly; Sandra W. Jacobson; Joseph L. Jacobson; Michel Charbonneau; Sami Haddad

Pre- and postnatal exposure to polychlorinated biphenyls (PCBs) can impair behavioural function in animal models at doses within the range at which humans are commonly exposed. Yet, epidemiologic studies conducted in the US and Europe are inconsistent with regard to the developmental effects of lactational exposure to these chemicals. This inconsistency may be due to limitations in the current methodological approaches for assessing postnatal exposure to PCBs. Our study used a physiologically based pharmacokinetic (PBPK) model to simulate blood PCB levels during specific pre- and postnatal periods and to evaluate the relation of those levels to infant behaviour. A previously validated PBPK model was used to simulate infant blood PCB-153 levels at delivery and on a month-by-month basis during the first year of life for Inuit infants enrolled in a longitudinal birth cohort. Infant behaviour was assessed using the Behaviour Rating Scales (BRS) of the Bayley Scales of Infant Development (BSID-II) at 11 months of age and video coding of inattention and activity measured during the administration of the mental development subscale of the BSID-II. The estimated pre- and postnatal PCB exposure measures predicted significant increases in inattention and activity at 11 months. Whereas inattention was related to prenatal exposure, activity level, measured by non-elicited activity, was best predicted by postnatal exposure, with the strongest association obtained for simulated PCB levels during the 4th month of life. These findings are consistent with previous reports indicating PCB-induced behavioural alteration in attention and activity level. Simulated infant toxicokinetic profiles for the first year of life revealed windows of susceptibility during which PCBs may impair infant attention and activity.


Environmental Health Perspectives | 2013

Is the Relationship between Prenatal Exposure to PCB-153 and Decreased Birth Weight Attributable to Pharmacokinetics?

Marc-André Verner; Robin McDougall; Anders Glynn; Melvin E. Andersen; Harvey J. Clewell; Matthew P. Longnecker

Background: A recent meta-analysis based on data from > 7,000 pregnancies reported an association between prenatal polychlorinated biphenyl (PCB)–153 exposure and reduced birth weight. Gestational weight gain, which is associated negatively with PCB levels in maternal and cord blood, and positively with birth weight, could substantially confound this association. Objective: We sought to estimate the influence of gestational weight gain on the association between PCB-153 exposure and birth weight using a pharmacokinetic model. Methods: We modified a recently published pharmacokinetic model and ran Monte Carlo simulations accounting for variability in physiologic parameters and their correlations. We evaluated the pharmacokinetic model by comparing simulated plasma PCB-153 levels during pregnancy to serial measurements in 10 pregnant women from another study population. We estimated the association between simulated plasma PCB-153 levels and birth weight using linear regression models. Results: The plasma PCB-153 level profiles generated with the pharmacokinetic model were comparable to measured levels in 10 pregnant women. We estimated a 118-g decrease in birth weight (95% CI: –129, –106 g) for each 1-μg/L increase in simulated cord plasma PCB-153, compared with the 150-g decrease estimated based on the previous meta-analysis. The estimated decrease in birth weight was reduced to –6 g (95% CI: –18, 6 g) when adjusted for simulated gestational weight gain. Conclusion: Our findings suggest that associations previously noted between PCB levels and birth weight may be attributable to confounding by maternal weight gain during pregnancy. Citation: Verner MA, McDougall R, Glynn A, Andersen ME, Clewell HJ III, Longnecker MP. 2013. Is the relationship between prenatal exposure to PCB-153 and decreased birth weight attributable to pharmacokinetics? Environ Health Perspect 121:1219–1224; http://dx.doi.org/10.1289/ehp.1206457


Neurotoxicology | 2013

Evaluating the neurotoxic effects of lactational exposure to persistent organic pollutants (POPs) in Spanish children

Mireia Gascon; Marc-André Verner; Mònica Guxens; Joan O. Grimalt; Joan Forns; Jesús Ibarluzea; Nerea Lertxundi; Ferran Ballester; Sabrina Llop; Sami Haddad; Jordi Sunyer; Martine Vrijheid

Although the brain continues developing in the postnatal period, epidemiological studies on the effects of postnatal exposure to neurotoxic POPs through breast-feeding remain mostly inconclusive. Failure to detect associations between postnatal exposure and health outcomes may stem from the limitations of commonly employed approaches to assess lactational exposure. The aim of the present study was to assess whether lactational exposure to polychlorinated biphenyl-153 (PCB-153), dichlorodiphenyldichloroethylene (DDE), or hexachlorobenzene (HCB) as estimated with a physiologically based pharmacokinetic (PBPK) model, is associated with decrements in mental and psychomotor development scores of the Bayley Scales of Infant Development (BSID) test in children aged around 14-months of a subsample (N=1175) of the Spanish INMA birth cohort, and to compare this with the effects of prenatal exposure. Although in the present study population PCB-153, DDE and HCB exposure increased within the first months of postnatal life, no associations were found between different periods of postnatal exposure to these compounds and mental or psychomotor scores. Increasing prenatal PCB-153 concentrations were associated with worse mental and psychomotor scores, although significance was only reached for psychomotor development (β [95%CI]=-1.36 [-2.61, -0.11]). Indeed, the association between exposure and effects observed during prenatal life weakened gradually across periods of postnatal life. Results of the present study suggest that, although breastfeeding increases childrens blood persistent organic pollutants (POPs) levels during postnatal life, deleterious effects of PCB-153 on neuropsychological development are mainly attributable to prenatal exposure.


Environmental Health Perspectives | 2014

Prenatal and Postnatal Serum PCB Concentrations and Cochlear Function in Children at 45 Months of Age

Todd A. Jusko; Renata Sisto; Ana Maria Iosif; Arturo Moleti; Soňa Wimmerová; Kinga Lancz; Juraj Tihányi; Eva Sovcikova; Beata Drobná; L’ubica Palkovičová; Dana Jurečková; Kelly Thevenet-Morrison; Marc-André Verner; Dean Sonneborn; Irva Hertz-Picciotto; Tomas Trnovec

Background: Some experimental and human data suggest that exposure to polychlorinated biphenyls (PCBs) may induce ototoxicity, though results of previous epidemiologic studies are mixed and generally focus on either prenatal or postnatal PCB concentrations exclusively. Objectives: Our aim was to evaluate the association between pre- and postnatal PCB concentrations in relation to cochlear status, assessed by distortion product otoacoustic emissions (DPOAEs), and to further clarify the critical periods in development where cochlear status may be most susceptible to PCBs. Methods: A total of 351 children from a birth cohort in eastern Slovakia underwent otoacoustic testing at 45 months of age. Maternal pregnancy, cord, and child 6-, 16-, and 45-month blood samples were collected and analyzed for PCB concentrations. At 45 months of age, DPOAEs were assessed at 11 frequencies in both ears. Multivariate, generalized linear models were used to estimate the associations between PCB concentrations at different ages and DPOAEs, adjusting for potential confounders. Results: Maternal and cord PCB-153 concentrations were not associated with DPOAEs at 45 months. Higher postnatal PCB concentrations at 6-, 16-, and 45-months of age were associated with lower (poorer) DPOAE amplitudes. When all postnatal PCB exposures were considered as an area-under-the-curve metric, an increase in PCB-153 concentration from the 25th to the 75th percentile was associated with a 1.6-dB SPL (sound pressure level) decrease in DPOAE amplitude (95% CI: –2.6, –0.5; p = 0.003). Conclusions: In this study, postnatal rather than maternal or cord PCB concentrations were associated with poorer performance on otoacoustic tests at age 45 months. Citation: Jusko TA, Sisto R, Iosif AM, Moleti A, Wimmerová S, Lancz K, Tihányi J, Šovčíková E, Drobná B, Palkovičová L, Jurečková D, Thevenet-Morrison K, Verner MA, Sonneborn D, Hertz-Picciotto I, Trnovec T. 2014. Prenatal and postnatal serum PCB concentrations and cochlear function in children at 45 months of age. Environ Health Perspect 122:1246–1252; http://dx.doi.org/10.1289/ehp.1307473


Environmental Science & Technology | 2016

A Simple Pharmacokinetic Model of Prenatal and Postnatal Exposure to Perfluoroalkyl Substances (PFASs)

Marc-André Verner; Gérard Ngueta; Elizabeth T. Jensen; Hermann Fromme; Wolfgang Völkel; Unni Cecilie Nygaard; Berit Granum; Matthew P. Longnecker

Most children are exposed to perfluoroalkyl substances (PFASs) through placental transfer, breastfeeding, and other environmental sources. To date, there are no validated tools to estimate exposure and body burden during infancy and childhood. In this study, we aimed to (i) develop a two-generation pharmacokinetic model of prenatal and postnatal exposure to perfluorooctanoic acid (PFOA), perfluorooctanesulfonate (PFOS), and perfluorohexanesulfonate (PFHxS); and to (ii) evaluate it against measured childrens levels in two studies. We developed a pharmacokinetic model consisting of a maternal and a child compartment to simulate lifetime exposure in women and transfer to the child across the placenta and through breastfeeding. To evaluate the model, we performed simulations for each mother-child dyad from two studies in which maternal PFAS levels at delivery and childrens PFAS levels were available. Model predictions based on maternal PFAS levels, sex of child, body weight, and duration of breastfeeding explained between 52% and 60% of the variability in measured childrens levels at 6 months of age and between 52% and 62% at 36 months. Monte Carlo simulations showed that the daily intake through breastfeeding and resulting internal PFAS levels can be much higher in nursing infants than in mothers. This pharmacokinetic model shows potential for postnatal exposure assessment in the context of epidemiological studies and risk assessment.

Collaboration


Dive into the Marc-André Verner's collaboration.

Top Co-Authors

Avatar

Sami Haddad

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Matthew P. Longnecker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robin McDougall

University of Ontario Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gérard Ngueta

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge