Marc Bonnet
École Polytechnique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marc Bonnet.
Inverse Problems | 2005
Marc Bonnet; Andrei Constantinescu
This review is devoted to some inverse problems arising in the context of linear elasticity, namely the identification of distributions of elastic moduli, model parameters or buried objects such as cracks. These inverse problems are considered mainly for three-dimensional elastic media under equilibrium or dynamical conditions, and also for thin elastic plates. The main goal is to overview some recent results, in an effort to bridge the gap between studies of a mathematical nature and problems defined from engineering practice. Accordingly, emphasis is given to formulations and solution techniques which are well suited to general-purpose numerical methods for solving elasticity problems on complex configurations, in particular the finite element method and the boundary element method. An underlying thread of the discussion is the fact that useful tools for the formulation, analysis and solution of inverse problems arising in linear elasticity, namely the reciprocity gap and the error in constitutive equation, stem from variational and virtual work principles, i.e., fundamental principles governing the mechanics of deformable solid continua. In addition, the virtual work principle is shown to be instrumental for establishing computationally efficient formulae for parameter or geometrical sensitivity, based on the adjoint solution method. Sensitivity formulae are presented for various situations, especially in connection with contact mechanics, cavity and crack shape perturbations, thus enriching the already extensive known repertoire of such results. Finally, the concept of topological derivative and its implementation for the identification of cavities or inclusions are expounded.
International Journal of Solids and Structures | 1996
Marc Bonnet; Subrata Mukherjee
This paper presents boundary element method (BEM) formulations for usual and sensitivity problems in (small strain) elasto-plasticity using the concept of the local consistent tangent operator (CTO). “Usual” problems here refer to analysis of nonlinear problems in structural and solid continua, for which Simo and Taylor first proposed the use of the CTO within the context of the finite element method (FEM). A new implicit BEM scheme for such problems, using the CTO, is presented first. A formulation for sensitivity analysis follows. It is shown that the sensitivity of the strain increment, associated with an infinitesimal variation of some design parameter, solves a linear problem which is governed by the (converged value of the) same global CTO as the one that appears in the usual problem. Numerical results for both usual and sensitivity problems are shown for a one-dimensional example. They demonstrate the effectiveness of the present approach. In particular, accurate sensitivities with respect to material parameters (e.g., exponent of the power-type hardening law) are obtained even with few integration cells and for large load increments.
Engineering Analysis With Boundary Elements | 1995
Marc Bonnet
Abstract In this paper, we consider the problem of identifying, by means of boundary element methods and nonlinear optimization, a cavity or obstacle of unknown location and shape embedded in a linearly acoustic or elastic medium. The unknown shape is classically sought so as to achieve a best fit between the measured and computed values of some physical quantity, which is here the scattered acoustic pressure field. One is usually led to the minimization of a cost function J . Classical nonlinear optimization algorithms need the repeated computation of the gradient of the cost function with respect to the design variables as well as the cost function itself. The present paper emphasizes the formulation and effectiveness of the adjoint problem method for the gradient evaluation. First, the hard obstacle inverse problem for 3-D acoustics is considered. For a given J , the adjoint problem is established, and the gradient of J is then formulated in terms of both primary and adjoint states. Next, the adjoint variable approach is extended to the case of a penetrable obstacle in a 3-D acoustical medium, and also for a traction-free cavity in a 3-D elastic medium. Explicit formulae for the gradient of J with respect to shape variations, which appear to be rather compact and elegant, are established for each case. The formulation is incorporated in an unconstrained minimization algorithm, in order to solve numerically the inverse problem. Numerical results are presented for the search of a rigid bounded obstacle embedded in an infinite 3-D acoustic medium, where the measurements are taken to be values of the pressure field on a remote measurement surface, the obstacle being illuminated by monochromatic plane waves. They demonstrate the efficiency of the proposed method. Some computational issues (accuracy, CPU time, influence of measurements errors) are discussed. Finally, for the sake of completeness, the direct differentiation approach is also treated and new derivative BIE formulations are established.
Inverse Problems | 2006
Bojan B. Guzina; Marc Bonnet
The aim of this study is an extension and employment of the concept of topological derivative as it pertains to the nucleation of infinitesimal inclusions in a reference (i.e. background) acoustic medium. The developments are motivated by the need to develop a preliminary indicator functional that would aid the solution of inverse scattering problems in terms of a rational initial guess about the geometry and material characteristics of a hidden (finite) obstacle; an information that is often required by iterative minimization algorithms. To this end the customary definition of topological derivative, which quantifies the sensitivity of a given cost functional with respect to the creation of an infinitesimal hole, is adapted to permit the nucleation of a dissimilar acoustic medium. On employing the Greens function for the background domain, computation of topological sensitivity for the three-dimensional Helmholtz equation is reduced to the solution of a reference, Laplace transmission problem. Explicit formulae are given for the nucleating inclusions of spherical and ellipsoidal shapes. For generality the developments are also presented in an alternative, adjoint-field setting that permits nucleation of inclusions in an infinite, semi-infinite or finite background medium. Through numerical examples, it is shown that the featured topological sensitivity could be used, in the context of inverse scattering, as an effective obstacle indicator through an assembly of sampling points where it attains pronounced negative values. On varying a material characteristic (density) of the nucleating obstacle, it is also shown that the proposed methodology can be used as a preparatory tool for both geometric and material identification.
Wave Motion | 1992
Martin G. Koller; Marc Bonnet; Raul Madariaga
We study dynamic antiplane cracks in the time domain by the boundary integral equation method (BIEM) based on the integral equation for displacement discontinuity (or crack opening displacement, COD) as a function of stress on the crack. This displacement discontinuity formulation presents the advantage, with respect to methods developed by Das and others in seismology, that it has to be solved only inside the crack. This BIEM is, however, difficult to implement numerically because of the hypersingularity of the kernel of the integral equation. Hence it is rewritten into a weakly singular form using a regularization technique proposed by Bonnet. The first step, following a method due to Sladek and Sladek, consists in converting the hypersingular integral equation for the displacement discontinuity into an integral equation for the displacement discontinuity and its tangential derivatives (dislocation density distribution); the latter involves a Cauchy type singular kernel. The second step is based on the observation that the hypersingularity is related to the static component of the kernel; the static singularity is then isolated and can be expressed in terms of weakly singular integrals using a result due to Bonnet. Although numerical applications discussed in this paper are all for the antiplane problem, the technique can be applied as well to in-plane crack dynamics. n nThe BIEM is implemented numerically using continuous linear space-time base functions to model the COD on the crack. In the present scheme the COD gradient interpolation is discontinuous at the element nodes while the integral equations are collocated at the element midpoints. This leads to an overdetermined discrete problem which is solved by standard least-squares methods. We use the dynamic BIEM to study a set of problems that appear in earthquake source dynamics, including the spontaneous dynamic crack propagation for a very simple rupture criterion. The numerical results compare favorably with the few exact solutions that are available. Then we demonstrate that difficulties experienced with finite difference simulations of spontaneous crack dynamics can be removed with the use of BIEM. The results are improved by the use of singular crack tip elements.
International Journal of Solids and Structures | 2003
Bojan B. Guzina; Sylvain Nintcheu Fata; Marc Bonnet
The problem of mapping underground cavities from surface seismic measurements is investigated within the framework of a regularized boundary integral equation (BIE) method. With the ground modeled as a uniform elastic half-space, the inverse analysis of elastic waves scattered by a three-dimensional void is formulated as a task of minimizing the misfit between experimental observations and theoretical predictions for an assumed void geometry. For an accurate treatment of the gradient search technique employed to solve the inverse problem, sensitivities of the predictive BIE model with respect to cavity parameters are evaluated semi-analytically using an adjoint problem approach and a continuum kinematics description. Several key features of the formulation, including the rigorous treatment of the radiation condition for semi-infinite solids, modeling of an illuminating seismic wave field, and treatment of the prior information, are highlighted. A set of numerical examples with spherical and ellipsoidal cavity geometries is included to illustrate the performance of the method. It is shown that the featured adjoint problem approach reduces the computational requirements by an order of magnitude relative to conventional finite-difference estimates, thus rendering the three-dimensional elastic-wave imaging of solids tractable for engineering applications.
Computers & Structures | 1995
Marc Bonnet
The subject of this paper is the formulation of boundary integral equations for first- and second-order shape sensitivities of boundary elastic fields in three-dimensional bodies. Here the direct differentiation approach is considered. It relies on the repeated application of the material derivative concept to the governing regularized (i.e. weakly singular) displacement boundary integral equation (RDBIE) for an elastostatic state on a given domain. As a result, governing BIEs, which are also weakly singular, are obtained for the elastic sensitivities up to the second order. They are formulated so as to allow a straightforward implementation; in particular no strongly singular integral is involved. It is shown that the actual computation of shape sensitivities using usual BEM discretization uses the already built and factored discrete integral operators and needs only to set up additional right-hand sides and additional backsubstitutions. Some relevant discretization aspects are discussed.
Engineering Analysis With Boundary Elements | 2001
Marc Bonnet
The present paper addresses several BIE-based or BIE-oriented formulations for sensitivity analysis of integral functionals with respect to the geometrical shape of a crack. Functionals defined in terms of integrals over the external boundary of a cracked body and involving the solution of a frequency-domain boundary-value elastodynamic problem are considered, but the ideas presented in this paper are applicable, with the appropriate modifications, to other kinds of linear field equations as well. Both direct differentiation and adjoint problem techniques are addressed, with recourse to either collocation or symmetric Galerkin BIE formulations. After a review of some basic concepts about shape sensitivity and material differentiation, the derivative integral equations for the elastodynamic crack problem are discussed in connection with both collocation and symmetric Galerkin BIE formulations. Building upon these results, the direct differentiation and the adjoint solution approaches are then developed. In particular, the adjoint solution approach is presented in three different forms compatible with boundary element method (BEM) analysis of crack problems, based on the discretized collocation BEM equations, the symmetric Galerkin BEM equations and the direct and adjoint stress intensity factors, respectively. The paper closes with a few comments.
Archive | 1994
Huy Duong Bui; Masataka Tanaka; Marc Bonnet; E. Luzzato; Hubert Maigre; M. Reynier
Quarterly Journal of Mechanics and Applied Mathematics | 2004
Bojan B. Guzina; Marc Bonnet