Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc Bonneu is active.

Publication


Featured researches published by Marc Bonneu.


Eukaryotic Cell | 2002

Rvs161p and Sphingolipids Are Required for Actin Repolarization following Salt Stress

Axelle Balguerie; Michel Bagnat; Marc Bonneu; Michel Aigle; Annick M. Breton

ABSTRACT In Saccharomyces cerevisiae, the actin cytoskeleton is depolarized by NaCl stress. In this study, the response was maximal after 30 min, and then actin patches repolarized. Rvs161p was required for actin repolarization because the rvs161Δ mutant did not repolarize actin patches after growth in a salt medium. Mutations suppressing the rvs161Δ-related salt sensitivity all occurred in genes required for sphingolipid biosynthesis: FEN1, SUR4, SUR2, SUR1, and IPT1. These suppressors also suppressed act1-1-related salt sensitivity and the defect in actin repolarization of the rvs161Δ mutant, providing a link between sphingolipids and actin polarization. Indeed, deletion of the suppressor genes suppressed the rvs161Δ defect in actin repolarization in two ways: either actin was not depolarized at the wild-type level in a set of suppressor mutants, or actin was repolarized in the absence of Rvs161p in the other suppressor mutants. Rvs161p was localized as cortical patches that concentrated at polarization sites, i.e., bud emergence and septa, and was found to be associated with lipid rafts. An important link between sphingolipids and actin polarization is that Rvs161p was required for actin repolarization and was found to be located in lipid rafts.


Analytical Biochemistry | 1991

Direct detection of yeast mutants with reduced viability on plates by erythrosine B staining

Marc Bonneu; Marc Crouzet; Maria C. Urdaci; Michel Aigle

In this paper we report a rapid method to screen yeast mutants exhibiting reduced viability directly on plates. This method avoids the need for replica plating and is based on the addition of the vital dye erythrosine B in nutrient medium. After 2 or 3 days of culture, colonies containing a large proportion of dead cells show a pink or a dark pink color whereas normal colonies are practically white.


MicrobiologyOpen | 2012

Evidence for the involvement of the anthranilate degradation pathway in Pseudomonas aeruginosa biofilm formation

Patricia Costaglioli; Christophe Barthe; Stéphane Claverol; Volker S. Brözel; Michel Perrot; Marc Crouzet; Marc Bonneu; Bertrand Garbay; Sébastien Vilain

Bacterial biofilms are complex cell communities found attached to surfaces and surrounded by an extracellular matrix composed of exopolysaccharides, DNA, and proteins. We investigated the whole‐genome expression profile of Pseudomonas aeruginosa sessile cells (SCs) present in biofilms developed on a glass wool substratum. The transcriptome and proteome of SCs were compared with those of planktonic cell cultures. Principal component analysis revealed a biofilm‐specific gene expression profile. Our study highlighted the overexpression of genes controlling the anthranilate degradation pathway in the SCs grown on glass wool for 24 h. In this condition, the metabolic pathway that uses anthranilate for Pseudomonas quinolone signal production was not activated, which suggested that anthranilate was primarily being consumed for energy metabolism. Transposon mutants defective for anthranilate degradation were analyzed in a simple assay of biofilm formation. The phenotypic analyses confirmed that P. aeruginosa biofilm formation partially depended on the activity of the anthranilate degradation pathway. This work points to a new feature concerning anthranilate metabolism in P. aeruginosa SCs.


BMC Microbiology | 2014

Exploring early steps in biofilm formation: set-up of an experimental system for molecular studies

Marc Crouzet; Caroline Le Sénéchal; Volker S. Brözel; Patricia Costaglioli; Christophe Barthe; Marc Bonneu; Bertrand Garbay; Sébastien Vilain

BackgroundBacterial biofilms are predominant in natural ecosystems and constitute a public health threat because of their outstanding resistance to antibacterial treatments and especially to antibiotics. To date, several systems have been developed to grow bacterial biofilms in order to study their phenotypes and the physiology of sessile cells. Although relevant, such systems permit analysis of various aspects of the biofilm state but often after several hours of bacterial growth.ResultsHere we describe a simple and easy-to-use system for growing P. aeruginosa biofilm based on the medium adsorption onto glass wool fibers. This approach which promotes bacterial contact onto the support, makes it possible to obtain in a few minutes a large population of sessile bacteria. Using this growth system, we demonstrated the feasibility of exploring the early stages of biofilm formation by separating by electrophoresis proteins extracted directly from immobilized cells. Moreover, the involvement of protein synthesis in P. aeruginosa attachment is demonstrated.ConclusionsOur system provides sufficient sessile biomass to perform biochemical and proteomic analyses from the early incubation period, thus paving the way for the molecular analysis of the early stages of colonization that were inaccessible to date.


Proteomics | 2013

Impact of foliar symptoms of "Esca proper" on proteins related to defense and oxidative stress of grape skins during ripening.

Grégory Pasquier; Delphine Lapaillerie; Sébastien Vilain; Jean-William Dupuy; Anne-Marie Lomenech; Stéphane Claverol; Laurence Geny; Marc Bonneu; Pierre-Louis Teissedre; Bernard Donèche

Esca is one of the major diseases affecting vineyards with direct impact on product yield; nevertheless, scientific studies concerning its impact on grape quality are scarce. As an attempt to better understand the mechanisms behind “Esca proper” development in grapes, this work focused on the identification of proteins whose expression is altered by the disease. 2‐DEs were performed on protein extracts from grape skins at different stages of maturity for two consecutive vintages. Grapes were collected in 2009 and in 2010 from plants that did not present signs of infection by Esca proper since the 2004 vintage and from plants that presented cast leaf symptoms at least once since 2004. For the first time, 13 proteins were shown to be influenced by Esca proper during the ripening process. Extensive bioinformatics analysis allowed the grouping of proteins involved in (i) stress tolerance and defense response, (ii) oxidative phosphorylation, (iii) oxidation–reduction processes in mitochondria, and (iv) oxidation–reduction processes in chloroplasts. Of these 13 proteins, cysteine synthase is the only one implicated in a metabolic pathway of oenological interest. This study shows how foliar symptoms of Esca proper may impact stress‐related pathways in grapes, which are characterized by modifications in the chain of oxidative phosphorylation and redox scavenging.


PLOS ONE | 2017

Pseudomonas aeruginosa cells attached to a surface display a typical proteome early as 20 minutes of incubation

Marc Crouzet; Stéphane Claverol; Anne-Marie Lomenech; Caroline Le Sénéchal; Patricia Costaglioli; Christophe Barthe; Bertrand Garbay; Marc Bonneu; Sébastien Vilain

Biofilms are present in all environments and often result in negative effects due to properties of the biofilm lifestyle and especially antibiotics resistance. Biofilms are associated with chronic infections. Controlling bacterial attachment, the first step of biofilm formation, is crucial for fighting against biofilm and subsequently preventing the persistence of infection. Thus deciphering the underlying molecular mechanisms involved in attachment could allow discovering molecular targets from it would be possible to develop inhibitors against bacterial colonization and potentiate antibiotherapy. To identify the key components and pathways that aid the opportunistic pathogen Pseudomonas aeruginosa in attachment we performed for the first time a proteomic analysis as early as after 20 minutes of incubation using glass wool fibers as a surface. We compared the protein contents of the attached and unattached bacteria. Using mass spectrometry, 3043 proteins were identified. Our results showed that, as of 20 minutes of incubation, using stringent quantification criteria 616 proteins presented a modification of their abundance in the attached cells compared to their unattached counterparts. The attached cells presented an overall reduced gene expression and characteristics of slow-growing cells. The over-accumulation of outer membrane proteins, periplasmic folding proteins and O-antigen chain length regulators was also observed, indicating a profound modification of the cell envelope. Consistently the sigma factor AlgU required for cell envelope homeostasis was highly over-accumulated in attached cells. In addition our data suggested a role of alarmone (p)ppGpp and polyphosphate during the early attachment phase. Furthermore, almost 150 proteins of unknown function were differentially accumulated in the attached cells. Our proteomic analysis revealed the existence of distinctive biological features in attached cells as early as 20 minutes of incubation. Analysis of some mutants demonstrated the interest of this proteomic approach in identifying genes involved in the early phase of adhesion to a surface.


Proteomics | 2016

Copper stress‐induced changes in leaf soluble proteome of Cu‐sensitive and tolerant Agrostis capillaris L. populations

Elena Hego; Sébastien Vilain; Aurélien Barré; Stéphane Claverol; Jean-William Dupuy; Céline Lalanne; Marc Bonneu; Christophe Plomion; Michel Mench

Changes in leaf soluble proteome were explored in 3‐month‐old plants of metallicolous (M) and nonmetallicolous (NM) Agrostis capillaris L. populations exposed to increasing Cu concentrations (1–50 μM) to investigate molecular mechanisms underlying plant responses to Cu excess and tolerance of M plants. Plants were cultivated on perlite (CuSO4 spiked‐nutrient solution). Soluble proteins, extracted by the trichloroacetic acid/acetone procedure, were separated with 2‐DE (linear 4–7 pH gradient). Analysis of CCB‐stained gels (PDQuest) reproducibly detected 214 spots, and 64 proteins differentially expressed were identified using LC‐MS/MS. In both populations, Cu excess impacted both light‐dependent (OEE, cytochrome b6‐f complex, and chlorophyll a‐b binding protein), and ‐independent (RuBisCO) photosynthesis reactions, more intensively in NM leaves (ferredoxin‐NADP reductase and metalloprotease FTSH2). In both populations, upregulation of isocitrate dehydrogenase and cysteine/methionine synthases respectively suggested increased isocitrate oxidation and enhanced need for S‐containing amino‐acids, likely for chelation and detoxification. In NM leaves, an increasing need for energetic compounds was indicated by the stimulation of ATPases, glycolysis, pentose phosphate pathway, and Calvin cycle enzymes; impacts on protein metabolism and oxidative stress increase were respectively suggested by the rise of chaperones and redox enzymes. Overexpression of a HSP70 may be pivotal for M Cu tolerance by protecting protein metabolism. All MS data have been deposited in the ProteomeXchange with the dataset identifier PXD001930 (http//proteomecentral.proteomexchange.org/dataset/PXD001930).


Oncotarget | 2017

A tyrosine kinase-STAT5-miR21-PDCD4 regulatory axis in chronic and acute myeloid leukemia cells

Anne-Sophie Espadinha; Valérie Prouzet-Mauléon; Stéphane Claverol; Valérie Lagarde; Marc Bonneu; François-Xavier Mahon; Bruno Cardinaud

MicroRNAs (miRNAs) are regulators of several key patho-physiological processes, including cell cycle and apoptosis. Using microarray-based miRNA profiling in K562 cells, a model of chronic myeloid leukemia (CML), we found that the oncoprotein BCR-ABL1 regulates the expression of miR-21, an “onco-microRNA”, found to be overexpressed in several cancers. This effect relies on the presence of two STAT binding sites on the promoter of miR-21, and on the phosphorylation status of STAT5, a transcription factor activated by the kinase activity of BCR-ABL1. Mir-21 regulates the expression of PDCD4 (programmed cell death protein 4), a tumor suppressor identified through a proteomics approach. The phosphoSTAT5 — miR-21 — PDCD4 pathway was active in CML primary CD34+ cells, but also in acute myeloid leukemia (AML) models like MV4.11 and MOLM13, where the constitutively active tyrosine kinase FLT3-ITD plays a similar role to BCR-ABL1 in the K562 cell line.


Journal of Proteome Research | 2015

Quantitative Proteomic and Phosphoproteomic Approaches for Deciphering the Signaling Pathway for Tension Wood Formation in Poplar

Mélanie Mauriat; Jean-Charles Leplé; Stéphane Claverol; Jérôme Bartholomé; Luc Negroni; Nicolas Richet; Céline Lalanne; Marc Bonneu; Catherine Coutand; Christophe Plomion

Trees adjust their growth following forced changes in orientation to re-establish a vertical position. In angiosperms, this adjustment involves the differential regulation of vascular cambial activity between the lower (opposite wood) and upper (tension wood) sides of the leaning stem. We investigated the molecular mechanisms leading to the formation of differential wood types through a quantitative proteomic and phosphoproteomic analysis on poplar subjected to a gravitropic stimulus. We identified and quantified 675 phosphopeptides, corresponding to 468 phosphoproteins, and 3 763 nonphosphorylated peptides, corresponding to 1 155 proteins, in the differentiating xylem of straight-growing trees (control) and trees subjected to a gravitational stimulus during 8 weeks. About 1% of the peptides were specific to a wood type (straight, opposite, or tension wood). Proteins quantified in more than one type of wood were more numerous: a mixed linear model showed 389 phosphopeptides and 556 proteins to differ in abundance between tension wood and opposite wood. Twenty-one percent of the phosphoproteins identified here were described in their phosphorylated form for the first time. Our analyses revealed remarkable developmental molecular plasticity, with wood type-specific phosphorylation events, and highlighted the involvement of different proteins in the biosynthesis of cell wall components during the formation of the three types of wood.


Biochemical and Biophysical Research Communications | 2013

The Saccharomyces cerevisiae RhoGAP Rgd1 is phosphorylated by the Aurora B like kinase Ipl1.

Aurélie Vieillemard; Valérie Prouzet-Mauléon; Michel Hugues; Fabien Lefèbvre; Romain Mitteau; Stéphane Claverol; Marc Bonneu; Marc Crouzet; François Doignon; Didier Thoraval

Polarized growth of the yeast Saccharomyces cerevisiae depends on different biological processes and requires several signaling pathways. Signaling is mediated through a set of proteins, which include Rho3p and Rho4p GTPases. Although these two proteins are involved in the control of distinct aspects of polarized growth in yeast, they have a common regulator: the Rgd1 RhoGAP protein. Here we demonstrate that Rgd1p is phosphorylated by the Aurora B like kinase Ipl1 and we observe that loss of Ipl1 function leads to a new Rgd1p distribution in a small part of the cell population.

Collaboration


Dive into the Marc Bonneu's collaboration.

Top Co-Authors

Avatar

Stéphane Claverol

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Aigle

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge