Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc C. Patterson is active.

Publication


Featured researches published by Marc C. Patterson.


Lancet Neurology | 2007

Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study

Marc C. Patterson; Darleen Vecchio; Helena Prady; Larry A. Abel; J. E. Wraith

BACKGROUND Niemann-Pick type C disease (NPC) is an inherited neurodegenerative disorder characterised by an intracellular lipid-trafficking defect with secondary accumulation of glycosphingolipids. Miglustat, a small iminosugar, reversibly inhibits glucosylceramide synthase, which catalyses the first committed step of glycosphingolipid synthesis. Miglustat is able to cross the blood-brain barrier, and is thus a potential therapy for neurological diseases. We aimed to establish the effect of miglustat on several markers of NPC severity. METHODS Patients aged 12 years or older who had NPC (n=29) were randomly assigned to receive either miglustat 200 mg three times a day (n=20) or standard care (n=9) for 12 months. 12 children younger than 12 years of age were included in an additional cohort; all received miglustat at a dose adjusted for body surface area. All participants were then treated with miglustat for an additional year in an extension study. The primary endpoint was horizontal saccadic eye movement (HSEM) velocity, based on its correlation with disease progression. This study is registered as an International Standard Randomised Controlled Trial, number ISRCTN26761144. FINDINGS At 12 months, HSEM velocity had improved in patients treated with miglustat versus those receiving standard care; results were significant when patients taking benzodiazepines were excluded (p=0.028). Children showed an improvement in HSEM velocity of similar size at 12 months. Improvement in swallowing capacity, stable auditory acuity, and a slower deterioration in ambulatory index were also seen in treated patients older than 12 years. The safety and tolerability of miglustat 200 mg three times a day in study participants was consistent with previous trials in type I Gaucher disease, where half this dose was used. INTERPRETATION Miglustat improves or stabilises several clinically relevant markers of NPC. This is the first agent studied in NPC for which there is both animal and clinical data supporting a disease modifying benefit.


Journal of Biological Chemistry | 1999

The Niemann-Pick C1 Protein Resides in a Vesicular Compartment Linked to Retrograde Transport of Multiple Lysosomal Cargo

Edward B. Neufeld; Meryl Wastney; Shutish C. Patel; Sundar Suresh; Adele Cooney; Nancy K. Dwyer; Calvin F. Roff; Kousaku Ohno; Jill A. Morris; Eugene D. Carstea; John P. Incardona; Jerome F. Strauss; Marie T. Vanier; Marc C. Patterson; Roscoe O. Brady; Peter G. Pentchev; E. Joan Blanchette-Mackie

Niemann-Pick C disease (NP-C) is a neurovisceral lysosomal storage disorder. A variety of studies have highlighted defective sterol trafficking from lysosomes in NP-C cells. However, the heterogeneous nature of additional accumulating metabolites suggests that the cellular lesion may involve a more generalized block in retrograde lysosomal trafficking. Immunocytochemical studies in fibroblasts reveal that theNPC1 gene product resides in a novel set of lysosome-associated membrane protein-2 (LAMP2)(+)/mannose 6-phosphate receptor(−) vesicles that can be distinguished from cholesterol-enriched LAMP2(+) lysosomes. Drugs that block sterol transport out of lysosomes also redistribute NPC1 to cholesterol-laden lysosomes. Sterol relocation from lysosomes in cultured human fibroblasts can be blocked at 21 °C, consistent with vesicle-mediated transfer. These findings suggest that NPC1(+) vesicles may transiently interact with lysosomes to facilitate sterol relocation. Independent of defective sterol trafficking, NP-C fibroblasts are also deficient in vesicle-mediated clearance of endocytosed [14C]sucrose. Compartmental modeling of the observed [14C]sucrose clearance data targets the trafficking defect caused by mutations in NPC1 to an endocytic compartment proximal to lysosomes. Low density lipoprotein uptake by normal cells retards retrograde transport of [14C]sucrose through this same kinetic compartment, further suggesting that it may contain the sterol-sensing NPC1 protein. We conclude that a distinctive organelle containing NPC1 mediates retrograde lysosomal transport of endocytosed cargo that is not restricted to sterol.


Genetics in Medicine | 2006

Pompe disease diagnosis and management guideline

Priya S. Kishnani; Robert D. Steiner; Deeksha Bali; Kenneth I. Berger; Barry J. Byrne; Laura E. Case; John F. Crowley; Steven Downs; R. Rodney Howell; Richard M. Kravitz; Joanne Mackey; Deborah Marsden; Anna Maria Martins; David S. Millington; Marc Nicolino; Gwen O’Grady; Marc C. Patterson; David M. Rapoport; Alfred E. Slonim; Carolyn T. Spencer; Cynthia J. Tifft; Michael S. Watson

Disclaimer: ACMG standards and guidelines are designed primarily as an educational resource for physicians and other health care providers to help them provide quality medical genetic services. Adherence to these standards and guidelines does not necessarily ensure a successful medical outcome. These standards and guidelines should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the geneticist should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient or specimen. It may be prudent, however, to document in the patient’s record the rationale for any significant deviation from these standards and guidelines.


Molecular Genetics and Metabolism | 2012

Recommendations for the diagnosis and management of Niemann-Pick disease type C: An update

Marc C. Patterson; Christian J. Hendriksz; Mark Walterfang; Frédéric Sedel; Marie T. Vanier; Frits A. Wijburg

Niemann-Pick disease type C (NP-C) is a rare inherited neurovisceral disease caused by mutations in either the NPC1 (in 95% of cases) or the NPC2 gene (in around 5% of cases), which lead to impaired intracellular lipid trafficking and accumulation of cholesterol and glycosphingolipids in the brain and other tissues. Characteristic neurological manifestations of NP-C include saccadic eye movement (SEM) abnormalities or vertical supranuclear gaze palsy (VSGP), cerebellar signs (ataxia, dystonia/dysmetria, dysarthria and dysphagia) and gelastic cataplexy. Epileptic seizures are also common in affected patients. Typically, neurological disease onset occurs during childhood, although an increasing number of cases are being detected and diagnosed during adulthood based on late-onset neurological signs and psychiatric manifestations. Categorization of patients according to age at onset of neurological manifestations (i.e. early-infantile, late-infantile, juvenile and adolescent/adult-onset) can be useful for the evaluation of disease course and treatment responses. The first international guidelines for the clinical management of NP-C in children and adults were published in 2009. Since that time a significant amount of data regarding the epidemiology, detection/diagnosis, and treatment of NP-C has been published. Here, we report points of consensus among experts in the diagnosis and treatment of NP-C based on a follow-up meeting in Paris, France in September 2011. This article serves as an update to the original guidelines providing, among other things, further information on detection/diagnostic methods, potential new methods of monitoring disease progression, and therapy. Treatment goals and the application of disease-specific therapy with miglustat are also re-evaluated.


Molecular Genetics and Metabolism | 2009

Recommendations on the diagnosis and management of Niemann-Pick disease type C

J. E. Wraith; Matthias R. Baumgartner; Bruno Bembi; Athanasios Covanis; Thierry Levade; Eugen Mengel; Mercè Pineda; Frédéric Sedel; Meral Topçu; Marie T. Vanier; Håkan Widner; Frits A. Wijburg; Marc C. Patterson

Niemann-Pick disease type C (NP-C) is a lysosomal storage disease in which impaired intracellular lipid trafficking leads to excess storage of cholesterol and glycosphingolipids in the brain and other tissues. It is characterized clinically by a variety of progressive, disabling neurological symptoms including clumsiness, limb and gait ataxia, dysarthria, dysphagia and cognitive deterioration (dementia). Until recently, there has been no disease-modifying therapy available for NP-C, with treatment limited to supportive measures. In most countries, NP-C is managed through specialist centers, with non-specialist support provided locally. However, effective patient support is hampered by the absence of national or international clinical management guidelines. In this paper, we seek to address this important gap in the current literature. An expert panel was convened in Paris, France in January 2009 to discuss best care practices for NP-C. This commentary reviews current literature on key aspects of the clinical management of NP-C in children, juveniles and adults, and provides recommendations based on consensus between the experts at the meeting.


Pediatric Neurology | 2009

Newborn screening for Krabbe disease: the New York State model.

Patricia K. Duffner; Michele Caggana; Joseph J. Orsini; David A. Wenger; Marc C. Patterson; Carl J. Crosley; Joanne Kurtzberg; Georgianne L. Arnold; Maria L. Escolar; Darius J. Adams; Mary R. Andriola; Alan M. Aron; Emma Ciafaloni; Alexandra Djukic; Richard W. Erbe; Patricia Galvin-Parton; Laura Helton; Edwin H. Kolodny; Barry E. Kosofsky; David Kronn; Jennifer M. Kwon; Paul A. Levy; Jill Miller-Horn; Thomas P. Naidich; Joan E. Pellegrino; James M. Provenzale; Stanley J. Rothman; Melissa P. Wasserstein

Krabbe disease is a rare inherited neurologic disorder affecting the central and peripheral nervous systems. The disease has four phenotypes: early infantile, later onset, adolescent, and adult. The only known treatment is hematopoietic stem cell transplantation, which is, in the early infantile form of the disease, most beneficial if performed before onset of clinical symptoms. In August 2006, New York State began screening all newborns for Krabbe disease. A rapid and accurate technique for assessing galactocerebrosidase activity and performing DNA mutation analysis had been developed. Interpreting these results was limited, however, because neither enzyme activity nor genetic mutation reliably predicts phenotype. A series of initiatives were therefore developed by a multidisciplinary group of neurologists, geneticists, metabolic pediatricians, neurodevelopmental pediatricians, and transplant physicians (the Krabbe Consortium of New York State) to enhance the effectiveness of the newborn screening program. A standardized clinical evaluation protocol was designed based on the available literature, criteria for transplantation for the early infantile phenotype were formulated, a clinical database and registry was developed, and a study of developmental and functional outcomes was instituted. This multidisciplinary standardized approach to evaluating infants who have positive results on newborn screening may serve as a model for other states as they begin the process of screening for Krabbe disease and other lysosomal storage disorders.


Journal of Clinical Investigation | 2000

Dolichol phosphate mannose synthase (DPM1) mutations define congenital disorder of glycosylation Ie (CDG-Ie)

Soohyun Kim; Vibeke Westphal; Geetha Srikrishna; Darshini P. Mehta; Sandra Peterson; James J. Filiano; Pamela S. Karnes; Marc C. Patterson; Hudson H. Freeze

Congenital disorders of glycosylation (CDGs) are metabolic deficiencies in glycoprotein biosynthesis that usually cause severe mental and psychomotor retardation. Different forms of CDGs can be recognized by altered isoelectric focusing (IEF) patterns of serum transferrin (Tf). Two patients with these symptoms and similar abnormal Tf IEF patterns were analyzed by metabolic labeling of fibroblasts with ¿2-(3)Hmannose. The patients produced a truncated dolichol-linked precursor oligosaccharide with 5 mannose residues, instead of the normal precursor with 9 mannose residues. Addition of 250 microM mannose to the culture medium corrected the size of the truncated oligosaccharide. Microsomes from fibroblasts of these patients were approximately 95% deficient in dolichol-phosphate-mannose (Dol-P-Man) synthase activity, with an apparent K(m) for GDP-Man approximately 6-fold higher than normal. DPM1, the gene coding for the catalytic subunit of Dol-P-Man synthase, was altered in both patients. One patient had a point mutation, C(274)G, causing an R(92)G change in the coding sequence. The other patient also had the C(274)G mutation and a 13-bp deletion that presumably resulted in an unstable transcript. Defects in DPM1 define a new glycosylation disorder, CDG-Ie.


Molecular Genetics and Metabolism | 2009

Miglustat in patients with Niemann-Pick disease Type C (NP-C): A multicenter observational retrospective cohort study

M. Pineda; J. E. Wraith; Eugen Mengel; Frédéric Sedel; Wuh-Liang Hwu; Marianne Rohrbach; Bruno Bembi; Mark Walterfang; G.C. Korenke; T. Marquardt; Cicile Luzy; Ruben Giorgino; Marc C. Patterson

Miglustat has been shown to stabilize disease progression in children, juveniles and adults with Niemann-Pick disease type C (NP-C), a rare genetic disorder characterized by progressive neurological deterioration. We report findings from a retrospective observational cohort study assessing the effects of miglustat on neurological disease progression in patients treated in the clinical practice setting. Data from all NP-C patients prescribed miglustat at 25 expert centers were evaluated using a disease disability scale. The scale analyzed four key parameters of neurological disease progression in NP-C (ambulation, manipulation, language, swallowing). Mean individual parameter scores and a composite score were calculated at baseline (time of diagnosis) and up to 4 follow-up visits. Overall, 66 patients were included (mean [SD] age at diagnosis, 9.7 [7.6] years, and at treatment start, 12.8 [9.5] years). The median (range) miglustat exposure was 1.46 (0.05-4.51) years. Mean annual progression was +0.11 score units/year from diagnosis to treatment start, indicating disease progression prior to therapy, and decreasing to -0.01 score units/year from treatment start to last clinic visit, indicating stabilization. Stabilization of neurological disease on miglustat was observed in all age groups, but the magnitude of the effect was greater in patients diagnosed in late childhood and in juveniles and adults. Stabilization of neurological disease was also observed in a subset of 19 patients with extended pre-treatment information. Overall, these data support previous clinical trial findings indicating clinically relevant beneficial effects of miglustat on neurological disease progression in patients with NP-C.


The Lancet | 1999

Broad screening test for sphingolipid-storage diseases.

Chii-Shiamg Chen; Marc C. Patterson; John F. O'Brien; Richard E. Pagano; Christine L. Wheatley

BACKGROUND Lipid-storage diseases are collectively important because they cause substantial morbidity and mortality, and because they may present as dementia, major psychiatric illness, developmental delay, or cerebral palsy. At present, no single assay can be used as an initial general screen for lipid-storage diseases. METHODS We used a fluorescent analogue of lactosylceramide, called N-[5-(5,7-dimethylborondipyrromethenedifluoride)-1-pentanoyl]D- lactosylsphingosine (BODIPY-LacCer), the emission of which changes from green to red wavelengths with increasing concentrations in membranes, to examine the intracellular distribution of the lipid within living cells. FINDINGS During a brief pulse-chase experiment, the fluorescent lipid accumulated in the lysosomes of fibroblasts from patients with Fabrys disease, GM1 gangliosidosis, GM2 gangliosidosis (Tay-Sachs and Sandhoff forms), metachromatic leucodystrophy, mucolipidosis type IV, Niemann-Pick disease (types A, B, and C), and sphingolipid-activator-protein-precursor (prosaposin) deficiency. In control cells, the lipid was mainly confined to the Golgi complex. In a masked study, replicate samples of 25 of 26 unique cell lines representing ten different lipid-storage diseases, and 18 of 20 unique cell lines representing controls were correctly identified; the sensitivity was 96.2% (95% CI 80.4-99.9) and the specificity 90.0% (68.3-98.8). INTERPRETATION This method may be useful as an initial general screen for lipid-storage diseases, and, with modification, could be used for large-scale automated screening of drugs to abrogate lysosomal storage in various lipidoses. The unexpected accumulation of BODIPY-LacCer in several biochemically distinct diseases raises important questions about common mechanisms of cellular dysfunction in these disorders.


Journal of Child Neurology | 2010

Long-term miglustat therapy in children with Niemann-Pick disease type C.

Marc C. Patterson; Darleen Vecchio; Elizabeth Jacklin; Larry A. Abel; Harbajan Chadha-Boreham; Cécile Luzy; Ruben Giorgino; J. E. Wraith

Niemann-Pick disease type C is a rare, genetic disease associated with impaired intracellular lipid trafficking and progressive neurological symptoms. Miglustat slowed disease progression in a 12-month randomized trial in juveniles and adults with Niemann-Pick disease type C, and in a parallel, noncontrolled study in affected children. Here, the authors report the open-label extension to the pediatric study. Patients aged 4 to 12 years received open-label miglustat (dose adjusted for body surface area) for an initial 12 months, during a further 12-month extension, and a long-term, continued extension phase. Efficacy assessments included horizontal saccadic eye movement, swallowing, and ambulation. Ten children completed 24 months’ treatment. Horizontal saccadic eye movement, ambulation, and swallowing were stabilized at 24 months. Analysis of key parameters of disease progression showed disease stability in 8 of 10 patients (80%). Miglustat stabilized neurological disease progression in pediatric patients with Niemann-Pick disease type C, with comparable safety and tolerability to that observed in adults and juveniles.

Collaboration


Dive into the Marc C. Patterson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Verena Peters

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Shamima Rahman

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Pineda

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge