Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc Corbera-Bellalta is active.

Publication


Featured researches published by Marc Corbera-Bellalta.


Arthritis & Rheumatism | 2012

Selective up-regulation of the soluble pattern-recognition receptor pentraxin 3 and of vascular endothelial growth factor in giant cell arteritis: relevance for recent optic nerve ischemia.

Mattia Baldini; Norma Maugeri; Giuseppe A. Ramirez; Chiara Giacomassi; Alessandra Castiglioni; Sergio Prieto-González; Marc Corbera-Bellalta; Gabriele Di Comite; Ilenia Papa; Giacomo Dell'Antonio; Enrico Ammirati; Ivan Cuccovillo; Viviana Vecchio; Alberto Mantovani; Patrizia Rovere-Querini; Maria Grazia Sabbadini; Maria C. Cid; Angelo A. Manfredi

OBJECTIVE To assess local expression and plasma levels of pentraxin 3 (PTX3) in patients with giant cell arteritis (GCA). METHODS Plasma and serum samples were obtained from 75 patients with GCA (20 of whom had experienced optic nerve ischemia in the previous 3 weeks and 24 of whom had experienced symptom onset in the previous 6 months and had no history of optic nerve ischemia) and 63 controls (35 age-matched healthy subjects, 15 patients with rheumatoid arthritis, and 13 patients with chronic stable angina). In 9 patients in whom GCA was recently diagnosed, circulating levels of interleukin-1β (IL-1β), IL-2, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12p70, CCL2/monocyte chemotactic protein 1, CCL3/macrophage inflammatory protein 1α (MIP-1α), CCL4/MIP-1β, CCL11/eotaxin, CXCL9/monokine induced by interferon-γ, CXCL10/interferon-γ-inducible 10-kd protein, tumor necrosis factor α (TNFα), interferon-γ, vascular endothelial growth factor (VEGF), granulocyte-macrophage colony-stimulating factor, and FasL were measured via a multiplexed cytometric assay. PTX3 and VEGF concentrations were assessed by enzyme-linked immunosorbent assay. PTX3 and CD68 expression were determined by immunohistochemistry and immunofluorescence on temporal artery samples. RESULTS GCA patients with very recent optic nerve ischemia had significantly higher PTX3 and VEGF levels compared to other GCA patients and controls. GCA patients with a disease duration of <6 months had significantly higher PTX3 levels compared to other GCA patients and controls. Immunohistochemistry revealed selective PTX3 expression in the wall of inflamed arteries. CONCLUSION Our findings indicate that local expression of PTX3 is a feature of vascular inflammation in GCA; elevated circulating levels of PTX3 identify patients with very recent optic nerve ischemia or a recent diagnosis. Optic nerve ischemia is also associated with increased circulating VEGF levels.


Annals of the Rheumatic Diseases | 2013

Increased IL-17A expression in temporal artery lesions is a predictor of sustained response to glucocorticoid treatment in patients with giant-cell arteritis

Georgina Espígol-Frigolé; Marc Corbera-Bellalta; Ester Planas-Rigol; Ester Lozano; Marta Segarra; Ana García-Martínez; Sergio Prieto-González; José Hernández-Rodríguez; Josep M. Grau; Mahboob Rahman; Maria C. Cid

Background Interleukin 17A (IL-17A) exerts pivotal proinflammatory functions in chronic inflammatory and autoimmune diseases. Objective To investigate IL-17A expression in temporal artery lesions from patients with giant-cell arteritis (GCA), and its relationship with disease outcome. Methods Fifty-seven patients with biopsy-proven GCA were prospectively evaluated, treated and followed for 4.5 years (52–464 weeks). Relapses, time (weeks) required to achieve a maintenance prednisone dose <10 mg/day, and time (weeks) to complete prednisone withdrawal were prospectively recorded. IL-17A mRNA was measured by real-time quantitative RT-PCR in temporal arteries from all patients and 19 controls. IL-17 protein expression was assessed by immunohistochemistry/immunofluorescence. Results IL-17A expression was significantly increased in temporal artery samples from GCA patients compared with controls (6.22±8.61 vs 2.50±3.9 relative units, p=0.016). Surprisingly, patients with strong IL-17A expression tended to experience less relapses, and required significantly shorter treatment periods (median 25 vs 44 weeks to achieve <10 mg prednisone/day, p=0.0079). There was no correlation between IL-17A and RORc or RORα expression suggesting that these transcription factors may not exclusively reflect Th17 differentiation, and that cells other than Th17 cells might contribute to IL-17 expression in active patients. Accordingly, FoxP3+IL-17A+ cells were identified in lesions by confocal microscopy and were dramatically reduced in specimens from treated patients. Conclusions IL-17A expression is increased in GCA lesions, and is a predictor of response to glucocorticoid treatment. The contribution of FoxP3+ cells to IL-17A production in untreated patients suggests that induced-Tregs may facilitate disease remission when proinflammatory cytokine production is downregulated by glucocorticosteroids.


Medicine | 2014

Relapses in patients with giant cell arteritis: prevalence, characteristics, and associated clinical findings in a longitudinally followed cohort of 106 patients.

Marco A. Alba; Ana García-Martínez; Sergio Prieto-González; Itziar Tavera-Bahillo; Marc Corbera-Bellalta; Ester Planas-Rigol; Georgina Espígol-Frigolé; Montserrat Butjosa; José Hernández-Rodríguez; Maria C. Cid

AbstractGiant cell arteritis (GCA) is a relapsing disease. However, the nature, chronology, therapeutic impact, and clinical consequences of relapses have been scarcely addressed. We conducted the present study to investigate the prevalence, timing, and characteristics of relapses in patients with GCA and to analyze whether a relapsing course is associated with disease-related complications, increased glucocorticoid (GC) doses, and GC-related adverse effects. The study cohort included 106 patients, longitudinally followed by the authors for 7.8 ± 3.3 years. Relapses were defined as reappearance of disease-related symptoms requiring treatment adjustment. Relapses were classified into 4 categories: polymyalgia rheumatica (PMR), cranial symptoms (including ischemic complications), systemic disease, or symptomatic large vessel involvement. Cumulated GC dose during the first year of treatment, time required to achieve a maintenance prednisone dose <10 mg/d (T10), <5 mg/d (T5), or complete prednisone discontinuation (T0), and GC-related side effects were recorded. Sixty-eight patients (64%) experienced at least 1 relapse, and 38 (36%) experienced 2 or more. First relapse consisted of PMR in 51%, cranial symptoms in 31%, and systemic complaints in 18%. Relapses appeared predominantly, but not exclusively, within the first 2 years of treatment, and only 1 patient developed visual loss. T10, T5, and T0 were significantly longer in patients with relapses than in patients without relapse (median, 40 vs 27 wk, p  < 0.0001; 163 vs 89.5 wk, p = 0.004; and 340 vs 190 wk, p = 0.001, respectively). Cumulated prednisone dose during the first year was significantly higher in relapsing patients (6.2 ± 1.7 g vs 5.4 ± 0.78 g, p = 0.015). Osteoporosis was more common in patients with relapses compared to those without (65% vs 32%, p = 0.001). In conclusion, the results of the present study provide evidence that a relapsing course is associated with higher and prolonged GC requirements and a higher frequency of osteoporosis in GCA.


Annals of the Rheumatic Diseases | 2010

Increased expression of the endothelin system in arterial lesions from patients with giant-cell arteritis: association between elevated plasma endothelin levels and the development of ischaemic events

Ester Lozano; Marta Segarra; Marc Corbera-Bellalta; Ana García-Martínez; Georgina Espígol-Frigolé; Ana Plà-Campo; José Hernández-Rodríguez; Maria C. Cid

Objective: Approximately 15–20% of patients with giant-cell arteritis (GCA) develop ischaemic complications often preceded by transient ischaemia. The expression of the endothelin (ET) system in GCA lesions was investigated to assess its relationship with the development of ischaemic complications. Methods: Plasma ET-1 was quantified by immunoassay in 61 patients with biopsy-confirmed GCA and 16 healthy donors. ET-1, endothelin-converting enzyme (ECE-1) and endothelin receptor (ETAR and ETBR) messenger RNA were measured by real-time quantitative reverse transcriptase–PCR in temporal arteries from 35 of these patients and 19 control arteries. Proteins were measured by immunoassay and Western blot. Results: ET-1 concentration was increased at the protein level in temporal artery samples from GCA patients compared with controls (0.98 (SEM 0.32) vs 0.28 (SEM 0.098) fmol/mg, p = 0.028). ECE-1, ETAR and ETBR/actin ratios (Western blot) were also significantly higher in GCA patients. Intriguingly, mRNA expression of ET-1, ECE-1 and both receptors was significantly reduced in GCA lesions compared with control arteries. When investigating mechanisms underlying these results, platelet-derived growth factor and IL-1β, present in GCA lesions, were found to downregulate ET-1 mRNA in cultured human temporal artery-derived smooth muscle cells. Glucocorticoid treatment for 8 days did not result in significantly decreased endothelin tissue concentration (0.87 (SEM 0.2) vs 0.52 (SEM 0.08); p = 0.6). Plasma endothelin concentrations were higher in patients with ischaemic complications (1.049 (SEM 0.48) vs 1.205 (SEM 0.63) pg/ml, p = 0.032). Conclusions: The endothelin system is increased at the protein level in GCA lesions creating a microenvironment prone to the development of ischaemic complications. Recovery induced by glucocorticoids is delayed, indicating persistent exposure to endothelin during initial treatment.


Annals of the Rheumatic Diseases | 2016

Blocking interferon γ reduces expression of chemokines CXCL9, CXCL10 and CXCL11 and decreases macrophage infiltration in ex vivo cultured arteries from patients with giant cell arteritis

Marc Corbera-Bellalta; Ester Planas-Rigol; Ester Lozano; Nekane Terrades-García; Marco A. Alba; Sergio Prieto-González; Ana García-Martínez; Robert Albero; Anna Enjuanes; Georgina Espígol-Frigolé; José Hernández-Rodríguez; Pascale Roux-Lombard; Walter Ferlin; Jean-Michel Dayer; Marie H Kosco-Vilbois; Maria C. Cid

Background Interferon γ (IFNγ) is considered a seminal cytokine in the pathogenesis of giant cell arteritis (GCA), but its functional role has not been investigated. We explored changes in infiltrating cells and biomarkers elicited by blocking IFNγ with a neutralising monoclonal antibody, A6, in temporal arteries from patients with GCA. Methods Temporal arteries from 34 patients with GCA (positive histology) and 21 controls were cultured on 3D matrix (Matrigel) and exposed to A6 or recombinant IFNγ. Changes in gene/protein expression were measured by qRT-PCR/western blot or immunoassay. Changes in infiltrating cells were assessed by immunohistochemistry/immunofluorescence. Chemotaxis/adhesion assays were performed with temporal artery-derived vascular smooth muscle cells (VSMCs) and peripheral blood mononuclear cells (PBMCs). Results Blocking endogenous IFNγ with A6 abrogated STAT-1 phosphorylation in cultured GCA arteries. Furthermore, selective reduction in CXCL9, CXCL10 and CXCL11 chemokine expression was observed along with reduction in infiltrating CD68 macrophages. Adding IFNγ elicited consistent opposite effects. IFNγ induced CXCL9, CXCL10, CXCL11, CCL2 and intracellular adhesion molecule-1 expression by cultured VSMC, resulting in increased PBMC chemotaxis/adhesion. Spontaneous expression of chemokines was higher in VSMC isolated from GCA-involved arteries than in those obtained from controls. Incubation of IFNγ-treated control arteries with PBMC resulted in adhesion/infiltration by CD68 macrophages, which did not occur in untreated arteries. Conclusions Our ex vivo system suggests that IFNγ may play an important role in the recruitment of macrophages in GCA by inducing production of specific chemokines and adhesion molecules. Vascular wall components (ie, VSMC) are mediators of these functions and may facilitate progression of inflammatory infiltrates through the vessel wall.


Annals of the Rheumatic Diseases | 2014

Changes in biomarkers after therapeutic intervention in temporal arteries cultured in Matrigel: a new model for preclinical studies in giant-cell arteritis

Marc Corbera-Bellalta; Ana García-Martínez; Ester Lozano; Ester Planas-Rigol; Itziar Tavera-Bahillo; Marco A. Alba; Sergio Prieto-González; Montserrat Butjosa; Georgina Espígol-Frigolé; José Hernández-Rodríguez; Pedro L. Fernández; Pascale Roux-Lombard; Jean-Michel Dayer; Mahboob Rahman; Maria C. Cid

Background Search for therapeutic targets in giant-cell arteritis (GCA) is hampered by the scarcity of functional systems. We developed a new model consisting of temporal artery culture in tri-dimensional matrix and assessed changes in biomarkers induced by glucocorticoid treatment. Methods Temporal artery sections from 28 patients with GCA and 22 controls were cultured in Matrigel for 5 days in the presence or the absence of dexamethasone. Tissue mRNA concentrations of pro-inflammatory mediators and vascular remodelling molecules was assessed by real-time RT-PCR. Soluble molecules were measured in the supernatant fluid by immunoassay. Results Histopathological features were exquisitely preserved in cultured arteries. mRNA concentrations of pro-inflammatory cytokines (particularly IL-1β and IFNγ), chemokines (CCL3/MIP-1α, CCL4/MIP-1β, CCL5/RANTES) and MMP-9 as well as IL-1β and MMP-9 protein concentrations in the supernatants were significantly higher in cultured arteries from patients compared with control arteries. The culture system itself upregulated expression of cytokines and vascular remodelling factors in control arteries. This minimised differences between patients and controls but underlines the relevance of changes observed. Dexamethasone downregulated pro-inflammatory mediator (IL-1β, IL-6, TNFα, IFNγ, MMP-9, TIMP-1, CCL3 and CXCL8) mRNAs but did not modify expression of vascular remodelling factors (platelet derived growth factor, MMP-2 and collagens I and III). Conclusions Differences in gene expression in temporal arteries from patients and controls are preserved during temporal artery culture in tri-dimensional matrix. Changes in biomarkers elicited by glucocorticoid treatment satisfactorily parallel results obtained in vivo. This may be a suitable model to explore pathogenetic pathways and to perform preclinical studies with new therapeutic agents.


Autoimmunity Reviews | 2017

Recent advances in our understanding of giant cell arteritis pathogenesis

Maxime Samson; Marc Corbera-Bellalta; S. Audia; Ester Planas-Rigol; Laurent Martin; Maria C. Cid; Bernard Bonnotte

Giant cell arteritis (GCA) is a granulomatous vasculitis affecting large arteries, especially the aorta and the extracranial branches of the external carotid artery. Its exact pathogenesis is not fully understood but major progress has been made in recent years, leading to new therapeutic targets like inhibition of the interleukin-6 pathway or the modulation of immune checkpoints. The cause of GCA has not been clearly identified but it is thought that GCA occurs on a genetic background and is triggered by unknown environmental factors that could activate and lead to the maturation of dendritic cells localized in the adventitia of normal arteries. These activated dendritic cells then produce chemokines which trigger the recruitment of CD4+ T cells, which in turn become activated, proliferate and polarize into Th1 and Th17 cells, which produce IFN-γ and IL-17, respectively. Exposed to IFN-γ, endothelial cells and vascular smooth muscle cells produce chemokines leading to the recruitment of further Th1 cells, CD8+ T cells and monocytes. The latter differentiate into macrophages, which, when persistently exposed to IFN-γ, form giant cells, the histological hallmark of GCA. With the contribution of vascular smooth muscle cells, immune cells then trigger the destruction and remodeling of the arterial wall, thus leading to the formation of a neo-intima resulting in progressive occlusion of the arterial lumen, which is responsible for the ischemic symptoms of GCA. In this paper, we review recent progress in our understanding of GCA pathogenesis in the fields of genetics, epigenetics, infections, immunology and vascular remodeling.


Haematologica | 2010

Thalidomide decreases gelatinase production by malignant B lymphoid cell lines through disruption of multiple integrin-mediated signaling pathways

Marta Segarra; Ester Lozano; Marc Corbera-Bellalta; C. Vilardell; Mt Cibeira; Jordi Esparza; Nora Izco; Joan Bladé; Maria C. Cid

Background Thalidomide and its analogs are effective agents in the treatment of multiple myeloma. Since gelatinases (matrix metalloproteinases-2 and -9) play a crucial role in tumor progression, we explored the effect of thalidomide on gelatinase production by malignant B lymphoid cell lines. Design and Methods We investigated the effect of therapeutic doses of thalidomide on integrin-mediated production of gelatinases by malignant B lymphoid cell lines by gelatin zymography, western-blot, reverse transcriptase polymerase chain reaction and invasive capacity through Matrigel-coated Boyden chambers. We also explored the effect of thalidomide on the activation status of the main signaling pathways involved in this process. Results Thalidomide strongly inhibited gelatinase production by B-cell lines and primary myeloma cells in response to fibronectin, the most efficient gelatinase inducer identified in lymphoid cells. Thalidomide disrupted integrin-mediated signaling pathways involved in gelatinase induction and release, such as Src and MAP-kinase ERK activation, resulting in decreased cell motility and invasiveness. Unexpectedly, treatment with thalidomide elicited an increase in fibronectin-induced Akt phosphorylation through phosphoinositide 3-kinase-independent pathways since thalidomide decreased fibronectin-induced phosphoinositide 3-kinase phosphorylation and reversed the inhibition of Akt phosphorylation achieved by the phosphoinositide 3-kinase inhibitors wortmannin and LY294002. Conclusions Disruption of integrin-mediated signaling may be an important mechanism through which thalidomide and its analogs impair tumor cell interactions with the microenvironment. The unexpected effects of thalidomide on Akt activation indicate the need for further studies to elucidate whether the interference with Akt downstream effects would synergize with the anti-tumor activity of thalidomide.


Annals of the Rheumatic Diseases | 2017

Endothelin-1 promotes vascular smooth muscle cell migration across the artery wall: a mechanism contributing to vascular remodelling and intimal hyperplasia in giant-cell arteritis

Ester Planas-Rigol; Nekane Terrades-García; Marc Corbera-Bellalta; Ester Lozano; Marco A. Alba; Marta Segarra; Georgina Espígol-Frigolé; Sergio Prieto-González; José Hernández-Rodríguez; Sara Preciado; Rodolfo Lavilla; Maria C. Cid

Background Giant-cell arteritis (GCA) is an inflammatory disease of large/medium-sized arteries, frequently involving the temporal arteries (TA). Inflammation-induced vascular remodelling leads to vaso-occlusive events. Circulating endothelin-1 (ET-1) is increased in patients with GCA with ischaemic complications suggesting a role for ET-1 in vascular occlusion beyond its vasoactive function. Objective To investigate whether ET-1 induces a migratory myofibroblastic phenotype in human TA-derived vascular smooth muscle cells (VSMC) leading to intimal hyperplasia and vascular occlusion in GCA. Methods and results Immunofluorescence/confocal microscopy showed increased ET-1 expression in GCA lesions compared with control arteries. In inflamed arteries, ET-1 was predominantly expressed by infiltrating mononuclear cells whereas ET receptors, particularly ET-1 receptor B (ETBR), were expressed by both mononuclear cells and VSMC. ET-1 increased TA-derived VSMC migration in vitro and α-smooth muscle actin (αSMA) expression and migration from the media to the intima in cultured TA explants. ET-1 promoted VSMC motility by increasing activation of focal adhesion kinase (FAK), a crucial molecule in the turnover of focal adhesions during cell migration. FAK activation resulted in Y397 autophosphorylation creating binding sites for Src kinases and the p85 subunit of PI3kinases which, upon ET-1 exposure, colocalised with FAK at the focal adhesions of migrating VSMC. Accordingly, FAK or PI3K inhibition abrogated ET-1-induced migration in vitro. Consistently, ET-1 receptor A and ETBR antagonists reduced αSMA expression and delayed VSMC outgrowth from cultured GCA-involved artery explants. Conclusions ET-1 is upregulated in GCA lesions and, by promoting VSMC migration towards the intimal layer, may contribute to intimal hyperplasia and vascular occlusion in GCA.


Journal of Vasculitis | 2016

Giant-Cell Arteritis: Immunopathogenic Mechanisms Involved in Vascular Inflammation and Remodeling

Ester Planas-Rigol; Marc Corbera-Bellalta; Georgina Espígol-Frigolé; Nekane Terrades-García; Marco A. Alba; Sergio Prieto-González; José Hernández-Rodríguez; Ester Lozano; Maria C. Cid

Giant-cell arteritis (GCA) is a large-vessel granulomatous vasculitis in which aging, gender and genetics likely play a significant role. The association with polymorphisms in the major histocompatibility complex suggests that GCA may be an antigen-driven disease. Immunopathology studies performed with temporal artery biopsies from patients with GCA have generated relevant clues regarding to pathogenesis by indicating participation of Th1 and Th17-mediated pathways, a prominent role for macrophages in tissue injury, and the relevance of vascular response to inflammation. Vascular wall elements, especially endothelial cells and vascular smooth muscle cells are not passive bystanders. Through expression of chemokines and adhesion molecules vascular cells contribute to the continuous recruitment of inflammatory cells that are able to enter the artery wall through newly formed neovessels. Inflammatory cell products, as well as vascular injury, trigger a vascular remodelling process. This eventually leads to the development of intimal hyperplasia and vascular lumen obliteration, source of ischemic complications.

Collaboration


Dive into the Marc Corbera-Bellalta's collaboration.

Top Co-Authors

Avatar

Maria C. Cid

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ester Lozano

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge