Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc Ekker is active.

Publication


Featured researches published by Marc Ekker.


Nature | 2010

Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes

Hsiao-Tuan Chao; Hongmei Chen; Rodney C. Samaco; Mingshan Xue; Maria H. Chahrour; Jong Yoo; Jeffrey L. Neul; Shiaoching Gong; Hui-Chen Lu; Nathaniel Heintz; Marc Ekker; John L.R. Rubenstein; Jeffrey L. Noebels; Christian Rosenmund; Huda Y. Zoghbi

Mutations in the X-linked MECP2 gene, which encodes the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2), cause Rett syndrome and several neurodevelopmental disorders including cognitive disorders, autism, juvenile-onset schizophrenia and encephalopathy with early lethality. Rett syndrome is characterized by apparently normal early development followed by regression, motor abnormalities, seizures and features of autism, especially stereotyped behaviours. The mechanisms mediating these features are poorly understood. Here we show that mice lacking Mecp2 from GABA (γ-aminobutyric acid)-releasing neurons recapitulate numerous Rett syndrome and autistic features, including repetitive behaviours. Loss of MeCP2 from a subset of forebrain GABAergic neurons also recapitulates many features of Rett syndrome. MeCP2-deficient GABAergic neurons show reduced inhibitory quantal size, consistent with a presynaptic reduction in glutamic acid decarboxylase 1 (Gad1) and glutamic acid decarboxylase 2 (Gad2) levels, and GABA immunoreactivity. These data demonstrate that MeCP2 is critical for normal function of GABA-releasing neurons and that subtle dysfunction of GABAergic neurons contributes to numerous neuropsychiatric phenotypes.


Neuron | 2006

The Endocannabinoid System Controls Key Epileptogenic Circuits in the Hippocampus

Krisztina Monory; Federico Massa; Michaela Egertová; Matthias Eder; Heike Blaudzun; Ruth E. Westenbroek; Wolfgang Kelsch; W. Jacob; Rudolf Marsch; Marc Ekker; Jason E. Long; John L.R. Rubenstein; Sandra Goebbels; Klaus-Armin Nave; Matthew J. During; Matthias Klugmann; Barbara Wölfel; Hans-Ulrich Dodt; Walter Zieglgänsberger; Carsten T. Wotjak; Ken Mackie; Maurice R. Elphick; Giovanni Marsicano; Beat Lutz

Balanced control of neuronal activity is central in maintaining function and viability of neuronal circuits. The endocannabinoid system tightly controls neuronal excitability. Here, we show that endocannabinoids directly target hippocampal glutamatergic neurons to provide protection against acute epileptiform seizures in mice. Functional CB1 cannabinoid receptors are present on glutamatergic terminals of the hippocampal formation, colocalizing with vesicular glutamate transporter 1 (VGluT1). Conditional deletion of the CB1 gene either in cortical glutamatergic neurons or in forebrain GABAergic neurons, as well as virally induced deletion of the CB1 gene in the hippocampus, demonstrate that the presence of CB1 receptors in glutamatergic hippocampal neurons is both necessary and sufficient to provide substantial endogenous protection against kainic acid (KA)-induced seizures. The direct endocannabinoid-mediated control of hippocampal glutamatergic neurotransmission may constitute a promising therapeutic target for the treatment of disorders associated with excessive excitatory neuronal activity.


The Journal of Neuroscience | 2000

A Highly Conserved Enhancer in the Dlx5/Dlx6Intergenic Region is the Site of Cross-Regulatory Interactions betweenDlx Genes in the Embryonic Forebrain

Ted Zerucha; Thorsten Stühmer; Gary Hatch; Byung Keon Park; Qiaoming Long; Guoying Yu; Adrianna Gambarotta; Joshua R. Schultz; John L.R. Rubenstein; Marc Ekker

Four Dlx homeobox genes, Dlx1,Dlx2, Dlx5, and Dlx6 are expressed in the same primordia of the mouse forebrain with temporally overlapping patterns. The four genes are organized as two tail-to-tail pairs, Dlx1/Dlx2 and Dlx5/Dlx6, a genomic arrangement conserved in distantly related vertebrates like zebrafish. The Dlx5/Dlx6 intergenic region contains two sequences of a few hundred base pairs, remarkably well conserved between mouse and zebrafish. Reporter transgenes containing these two sequences are expressed in the forebrain of transgenic mice and zebrafish with patterns highly similar to endogenous Dlx5 andDlx6 expression. The activity of the transgene is drastically reduced in mouse mutants lacking both Dlx1and Dlx2, consistent with the decrease in endogenousDlx5 and Dlx6 expression. These results suggest that cross-regulation by Dlx proteins, mediated by the intergenic sequences, is essential for Dlx5 andDlx6 expression in the forebrain. This hypothesis is supported by cotransfection and DNA-protein binding experiments. We propose that the Dlx genes are part of a highly conserved developmental pathway that regulates forebrain development.


The Journal of Neuroscience | 2007

A Subpopulation of Olfactory Bulb GABAergic Interneurons Is Derived from Emx1- and Dlx5/6-Expressing Progenitors

Minoree Kohwi; Magdalena A. Petryniak; Jason E. Long; Marc Ekker; Kunihiko Obata; Yuchio Yanagawa; John L.R. Rubenstein; Arturo Alvarez-Buylla

The subventricular zone (SVZ) of the postnatal brain continuously generates olfactory bulb (OB) interneurons. We show that calretinin+, calbindin+, and dopaminergic (TH+) periglomerular OB interneurons correspond to distinct subtypes of GABAergic cells; all were produced in the postnatal mouse brain, but they matured and were eliminated at different rates. The embryonic lateral ganglionic eminence (LGE) is thought to be the site of origin of postnatal SVZ neural progenitors. Consistently, grafts of the embryonic LGE into the adult brain SVZ generated many OB interneurons, including TH+ and calbindin+ periglomerular interneurons. However, calretinin+ cells were not produced from these LGE grafts. Surprisingly, pallial and septal embryonic progenitors transplanted into the adult brain SVZ also resulted in the generation of OB interneurons, including calretinin+ cells. A subset of Dlx2+ OB interneurons was derived from cells expressing Emx1, a transcription factor largely restricted to the pallium during development. Emx1 lineage-derived cells contributed a substantial portion of GABAergic cells in the OB, including calretinin+ interneurons. This is in contrast to cortex, in which Emx1 lineage-derived cells do not differentiate into GABAergic neurons. Our results suggest that some OB interneurons are derived from progenitors outside the LGE and that precursors expressing what has classically been considered a pallial transcription factor generate GABAergic interneurons.


PLOS Biology | 2004

A Focused and Efficient Genetic Screening Strategy in the Mouse: Identification of Mutations That Disrupt Cortical Development

Konstantinos Zarbalis; Scott R. May; Yiguo Shen; Marc Ekker; John L.R. Rubenstein; Andrew S. Peterson

Although the mechanisms that regulate development of the cerebral cortex have begun to emerge, in large part through the analysis of mutant mice (Boncinelli et al. 2000; Molnar and Hannan 2000; Walsh and Goffinet 2000), many questions remain unanswered. To provide resources for further dissecting cortical development, we have carried out a focused screen for recessive mutations that disrupt cortical development. One aim of the screen was to identify mutants that disrupt the tangential migration of interneurons into the cortex. At the same time, we also screened for mutations that altered the growth or morphology of the cerebral cortex. We report here the identification of thirteen mutants with defects in aspects of cortical development ranging from the establishment of epithelial polarity to the invasion of thalamocortical axons. Among the collection are three novel alleles of genes for which mutant alleles had already been used to explore forebrain development, and four mutants with defects in interneuron migration. The mutants that we describe here will aid in deciphering the molecules and mechanisms that regulate cortical development. Our results also highlight the utility of focused screens in the mouse, in addition to the large-scale and broadly targeted screens that are being carried out at mutagenesis centers.


Molecular Psychiatry | 2008

Conditional mouse mutants highlight mechanisms of corticotropin-releasing hormone effects on stress-coping behavior

A. Lu; M. A. Steiner; Nigel Whittle; A. M. Vogl; S. M. Walser; M. Ableitner; Damian Refojo; Marc Ekker; John L.R. Rubenstein; G. K. Stalla; Nicolas Singewald; Florian Holsboer; Carsten T. Wotjak; Wolfgang Wurst; Jan M. Deussing

Hypersecretion of central corticotropin-releasing hormone (CRH) has been implicated in the pathophysiology of affective disorders. Both, basic and clinical studies suggested that disrupting CRH signaling through CRH type 1 receptors (CRH-R1) can ameliorate stress-related clinical conditions. To study the effects of CRH-R1 blockade upon CRH-elicited behavioral and neurochemical changes we created different mouse lines overexpressing CRH in distinct spatially restricted patterns. CRH overexpression in the entire central nervous system, but not when overexpressed in specific forebrain regions, resulted in stress-induced hypersecretion of stress hormones and increased active stress-coping behavior reflected by reduced immobility in the forced swim test and tail suspension test. These changes were related to acute effects of overexpressed CRH as they were normalized by CRH-R1 antagonist treatment and recapitulated the effect of stress-induced activation of the endogenous CRH system. Moreover, we identified enhanced noradrenergic activity as potential molecular mechanism underlying increased active stress-coping behavior observed in these animals. Thus, these transgenic mouse lines may serve as animal models for stress-elicited pathologies and treatments that target the central CRH system.


Proceedings of the National Academy of Sciences of the United States of America | 2008

An endothelin-1 switch specifies maxillomandibular identity

Takahiro Sato; Yukiko Kurihara; Rieko Asai; Yumiko Kawamura; Kazuo Tonami; Yasunobu Uchijima; Eglantine Heude; Marc Ekker; Giovanni Levi; Hiroki Kurihara

Articulated jaws are highly conserved structures characteristic of gnathostome evolution. Epithelial-mesenchymal interactions within the first pharyngeal arch (PA1) instruct cephalic neural crest cells (CNCCs) to form the different skeletal elements of the jaws. The endothelin-1 (Edn1)/endothelin receptor type-A (Ednra)→Dlx5/6→Hand2 signaling pathway is necessary for lower jaw formation. Here, we show that the Edn1 signaling is sufficient for the conversion of the maxillary arch to mandibular identity. Constitutive activation of Ednra induced the transformation of upper jaw, maxillary, structures into lower jaw, mandibular, structures with duplicated Meckels cartilage and dermatocranial jaws constituted by 4 dentary bones. Misexpression of Hand2 in the Ednra domain caused a similar transformation. Skeletal transformations are accompanied by neuromuscular remodeling. Ednra is expressed by most CNCCs, but its constitutive activation affects predominantly PA1. We conclude that after migration CNCCs are not all equivalent, suggesting that their specification occurs in sequential steps. Also, we show that, within PA1, CNCCs are competent to form both mandibular and maxillary structures and that an Edn1 switch is responsible for the choice of either morphogenetic program.


American Journal of Physiology-renal Physiology | 2009

Nitrogen excretion in developing zebrafish (Danio rerio): a role for Rh proteins and urea transporters

Marvin H. Braun; Shelby Louise Steele; Marc Ekker; Steve F. Perry

Injection of antisense oligonucleotide morpholinos to elicit selective gene knockdown of ammonia (Rhag, Rhbg, and Rhcg1) or urea transporters (UT) was used as a tool to assess the relative importance of each transporter to nitrogen excretion in developing zebrafish (Danio rerio). Knockdown of UT caused urea excretion to decrease by approximately 90%, whereas each of the Rh protein knockdowns resulted in an approximately 50% reduction in ammonia excretion. Contrary to what has been hypothesized previously for adult fish, each of the Rh proteins appeared to have a similar effect on total ammonia excretion, and thus all are required to facilitate normal ammonia excretion in the zebrafish larva. As demonstrated in other teleosts, zebrafish embryos utilized urea to a much greater extent than adults and were effectively ureotelic until hatching. At that point, ammonia excretion rapidly increased and appeared to be triggered by a large increase in the mRNA expression of Rhag, Rhbg, and Rhcg1. Unlike the situation in the adult pufferfish (35), the various transporters are not specifically localized to the gills of the developing zebrafish, but each protein has a unique expression pattern along the skin, gills, and yolk sac. This disparate pattern of expression would appear to preclude interaction between the Rh proteins in zebrafish embryos. However, this may be a developmental feature of the delayed maturation of the gills, because as the embryos matured, expression of the transporters in and around the gills increased.


The Journal of Neuroscience | 2007

Distinct cis-Regulatory Elements from the Dlx1/Dlx2 Locus Mark Different Progenitor Cell Populations in the Ganglionic Eminences and Different Subtypes of Adult Cortical Interneurons

Noël Ghanem; Man Yu; Jason E. Long; Gary Hatch; John L.R. Rubenstein; Marc Ekker

Distinct subtypes of cortical GABAergic interneurons provide inhibitory signals that are indispensable for neural network function. The Dlx homeobox genes have a central role in regulating their development and function. We have characterized the activity of three cis-regulatory sequences involved in forebrain expression of vertebrate Dlx genes: upstream regulatory element 2 (URE2), I12b, and I56i. The three regulatory elements display regional and temporal differences in their activities within the lateral ganglionic eminence (LGE), medial ganglionic eminence (MGE), and caudal ganglionic eminence (CGE) and label distinct populations of tangentially migrating neurons at embryonic day 12.5 (E12.5) and E13.5. We provide evidence that the dorsomedial and ventral MGE are distinct sources of tangentially migrating neurons during midgestation. In the adult cortex, URE2 and I12b/I56i are differentially expressed in parvalbumin-, calretinin-, neuropeptide Y-, and neuronal nitric oxide synthase-positive interneurons; I12b and I56i were specifically active in somatostatin-, vasoactive intestinal peptide-, and calbindin-positive interneurons. These data suggest that interneuron subtypes use distinct combinations of Dlx1/Dlx2 enhancers from the time they are specified through adulthood.


Current Neurology and Neuroscience Reports | 2011

Modeling Neurodegeneration in Zebrafish

Yanwei Xi; Sandra Noble; Marc Ekker

The zebrafish, Danio rerio, has been established as an excellent vertebrate model for the study of developmental biology and gene function. It also has proven to be a valuable model to study human diseases. Here, we reviewed recent publications using zebrafish to study the pathology of human neurodegenerative diseases including Parkinson’s, Huntington’s, and Alzheimer’s. These studies indicate that zebrafish genes and their human homologues have conserved functions with respect to the etiology of neurodegenerative diseases. The characteristics of the zebrafish and the experimental approaches to which it is amenable make this species a useful complement to other animal models for the study of pathologic mechanisms of neurodegenerative diseases and for the screening of compounds with therapeutic potential.

Collaboration


Dive into the Marc Ekker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Man Yu

University of Ottawa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge