Marc Fabert
University of Limoges
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marc Fabert.
Nature Photonics | 2017
Katarzyna Krupa; Alessandro Tonello; Badr Mohamed Ibrahim Shalaby; Marc Fabert; Alain Barthélémy; Guy Millot; Stefan Wabnitz; Vincent Couderc
The Kerr effect in graded-index multimode fibres drives a spatial beam self-cleaning phenomenon that withstands fibre bending and does not necessitate dissipative processes such as stimulated scattering. Multimode optical fibres are enjoying renewed attention, boosted by the urgent need to overcome the current capacity crunch of single-mode fibre (SMF) systems and by recent advances in multimode complex nonlinear optics1,2,3,4,5,6,7,8,9,10,11,12,13. In this work, we demonstrate that standard multimode fibres (MMFs) can be used as ultrafast all-optical tools for the transverse beam manipulation of high-power laser pulses. Our experimental data show that the Kerr effect in a graded-index (GRIN) MMF is the driving mechanism that overcomes speckle distortions, and leads to a counterintuitive effect that results in a spatially clean output beam robust against fibre bending. Our observations demonstrate that nonlinear beam reshaping into the fundamental mode of a MMF can be achieved even in the absence of a dissipative process such as stimulated scattering (Raman or Brillouin)14,15.
Scientific Reports | 2016
Guillaume Ducourthial; Pierre Leclerc; Tigran Mansuryan; Marc Fabert; Julien Brevier; Rémi Habert; Flavie Braud; Renaud Batrin; Christine Vever-Bizet; Geneviève Bourg-Heckly; Luc Thiberville; Anne Druilhe; Alexandre Kudlinski; Frédéric Louradour
We present a two-photon microendoscope capable of in vivo label-free deep-tissue high-resolution fast imaging through a very long optical fiber. First, an advanced light-pulse spectro-temporal shaping device optimally precompensates for linear and nonlinear distortions occurring during propagation within the endoscopic fiber. This enables the delivery of sub-40-fs duration infrared excitation pulses at the output of 5 meters of fiber. Second, the endoscopic fiber is a custom-made double-clad polarization-maintaining photonic crystal fiber specifically designed to optimize the imaging resolution and the intrinsic luminescence backward collection. Third, a miniaturized fiber-scanner of 2.2 mm outer diameter allows simultaneous second harmonic generation (SHG) and two-photon excited autofluorescence (TPEF) imaging at 8 frames per second. This microendoscope’s transverse and axial resolutions amount respectively to 0.8 μm and 12 μm, with a field-of-view as large as 450 μm. This microendoscope’s unprecedented capabilities are validated during label-free imaging, ex vivo on various fixed human tissue samples, and in vivo on an anesthetized mouse kidney demonstrating an imaging penetration depth greater than 300 μm below the surface of the organ. The results reported in this manuscript confirm that nonlinear microendoscopy can become a valuable clinical tool for real-time in situ assessment of pathological states.
Optics Letters | 2016
Katarzyna Krupa; Christophe Louot; Vincent Couderc; Marc Fabert; R. Guénard; Badr Mohamed Ibrahim Shalaby; Alessandro Tonello; Dominique Pagnoux; Philippe Leproux; Abdelkrim Bendahmane; R. Dupiol; Guy Millot; S. Wabnitz
We experimentally demonstrate that pumping a graded-index multimode fiber with sub-ns pulses from a microchip Nd:YAG laser leads to spectrally flat supercontinuum generation with a uniform bell-shaped spatial beam profile extending from the visible to the mid-infrared at 2500 nm. We study the development of the supercontinuum along the multimode fiber by the cut-back method, which permits us to analyze the competition between the Kerr-induced geometric parametric instability and stimulated Raman scattering. We also performed a spectrally resolved temporal analysis of the supercontinuum emission.
Optics Express | 2008
Marc Fabert; Agnès Desfarges-Berthelemot; Vincent Kermène; Aurelian Crunteanu; David Bouyge; Pierre Blondy
We present an Ytterbium fibre laser operating in the Q-switch regime by using a Micro- Opto- Electro- Mechanical System (MOEMS) of novel design. The cantilever-type micro-mirror is designed to generate short laser pulses with duration between 20 ns and 100 ns at repetition rates ranging from a few kilohertz up to 800 kHz. The bent profile of this new type of MOEMS ensures a high modulation rate of the laser cavity losses while keeping a high actuating frequency.
Optics Letters | 2017
Alain Barthélémy; R. Dupiol; A. Bendahmane; K. Krupa; Alessandro Tonello; Marc Fabert; Bertrand Kibler; Thibaut Sylvestre; A. Barthelemy; Vincent Couderc; S. Wabnitz; Guy Millot
We demonstrate far-detuned parametric frequency conversion processes in a few mode graded-index optical fibers pumped by a Q-switched picosecond laser at 1064 nm. Through a detailed analytical and numerical analysis, we show that the multiple sidebands are generated through a complex cascaded process involving inter-modal four-wave mixing. The resulting parametric wavelength detuning spans in the visible down to 405 nm and in the near-infrared up to 1355 nm.
Optics Express | 2017
R. Guénard; Katarzyna Krupa; R. Dupiol; Marc Fabert; A. Bendahmane; Vincent Kermène; Agnès Desfarges-Berthelemot; Jean-Louis Auguste; Alessandro Tonello; Alain Barthélémy; Guy Millot; S. Wabnitz; Vincent Couderc
We experimentally demonstrate that Kerr spatial self-cleaning of a pulsed beam can be obtained in an amplifying multimode optical fiber. An input peak power of 500 W only was sufficient to produce a quasi-single-mode emission from the double-clad ytterbium doped multimode fiber (YMMF) with non-parabolic refractive index profile. We compare the self-cleaning behavior observed in the same fiber with loss and with gain. Laser gain introduces new opportunities to achieve spatial self-cleaning of light in multimode fibers at a relatively low power threshold.
Journal of Applied Physics | 2017
Virginie Théry; Alexandre Boulle; Aurelian Crunteanu; Jean-Christophe Orlianges; Arnaud Beaumont; Richard Mayet; Amine Mennai; Françoise Cosset; Annie Bessaudou; Marc Fabert
Large area (up to 4 squared inches) epitaxial VO 2 films, with a uniform thickness and exhibiting an abrupt metal-insulator transition with a resistivity ratio as high as 2.85 × 10 4 have been grown on (001)-oriented sapphire substrates by electron beam evaporation. The lattice distortions (mosaicity) and the level of strain in the films have been assessed by X-ray diffraction. It is demonstrated that the films grow in a domain-matching mode where distortions are confined close to the interface which allows to grow high-quality materials despite the high film-substrate lattice mismatch. It is further shown that a post-deposition high-temperature oxygen annealing step is crucial to ensure the correct film stoichiometry and provide the best structural and electrical properties. Alternatively, it is possible to obtain high quality films with an RF discharge during deposition, which hence do not require the additional annealing step. Such films exhibit similar electrical properties and only slightly degraded structural properties.
Optics Letters | 2011
Marc Fabert; Vincent Kermène; Agnès Desfarges-Berthelemot; Pierre Blondy; Aurelian Crunteanu
We present what we believe to be the first fiber laser system that is actively mode-locked by a deformable micromirror. The micromirror device is placed within the laser cavity and performs a dual function of modulator and end-cavity mirror. The mode-locked laser provides ~1-ns-long pulses with 20 nJ/pulse energy at 5 MHz repetition rates.
Optics Express | 2017
R. Guénard; Katarzyna Krupa; R. Dupiol; Marc Fabert; Abdelkrim Bendahmane; Vincent Kermène; Agnès Desfarges-Berthelemot; Jean-Louis Auguste; Alessandro Tonello; A. Barthelemy; Guy Millot; S. Wabnitz; Vincent Couderc
We study a coupled cavity laser configuration where a passively Q-switched Nd:YAG microchip laser is combined with an extended cavity, including a doped multimode fiber. For appropriate coupling levels with the extended cavity, we observed that beam self-cleaning was induced in the multimode fiber thanks to nonlinear modal coupling, leading to a quasi-single mode laser output. In the regime of beam self-cleaning, laser pulse duration was reduced from 525 to 225 ps. We also observed a Q-switched mode-locked operation, where spatial self-cleaning was accompanied by far-detuned nonlinear frequency conversion in the active multimode fiber.
Optics Express | 2012
Vincent Couderc; Aurelian Crunteanu; Marc Fabert; Florent Doutre; Farid El Bassri; Dominique Pagnoux; Alain Jalocha
We present a novel Q-switched laser source using a micro-optical-electromechanical mirror (MOEM) designed for short pulse emission. It is based on a hybrid configuration including a passively Q-switched microchip laser coupled to a fiber cavity closed by a cantilever type MOEM acting as an active modulator. This specially designed mirror with a single reflecting gold membrane is switched by low bias voltage ~50 V (peak to peak). This device emits pulses at tunable repetition rates up to 1.6 kHz, with ~564 ps duration and 3.4 kW peak power, which constitutes the shortest pulse duration ever reported with MOEMs based pulsed lasers.