Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc Foretz is active.

Publication


Featured researches published by Marc Foretz.


Clinical Science | 2012

Cellular and molecular mechanisms of metformin: an overview

Benoit Viollet; Bruno Guigas; Nieves Sanz Garcia; Jocelyne Leclerc; Marc Foretz; Fabrizio Andreelli

Considerable efforts have been made since the 1950s to better understand the cellular and molecular mechanisms of action of metformin, a potent antihyperglycaemic agent now recommended as the first-line oral therapy for T2D (Type 2 diabetes). The main effect of this drug from the biguanide family is to acutely decrease hepatic glucose production, mostly through a mild and transient inhibition of the mitochondrial respiratory chain complex I. In addition, the resulting decrease in hepatic energy status activates AMPK (AMP-activated protein kinase), a cellular metabolic sensor, providing a generally accepted mechanism for the action of metformin on hepatic gluconeogenesis. The demonstration that respiratory chain complex I, but not AMPK, is the primary target of metformin was recently strengthened by showing that the metabolic effect of the drug is preserved in liver-specific AMPK-deficient mice. Beyond its effect on glucose metabolism, metformin has been reported to restore ovarian function in PCOS (polycystic ovary syndrome), reduce fatty liver, and to lower microvascular and macrovascular complications associated with T2D. Its use has also recently been suggested as an adjuvant treatment for cancer or gestational diabetes and for the prevention in pre-diabetic populations. These emerging new therapeutic areas for metformin will be reviewed together with recent findings from pharmacogenetic studies linking genetic variations to drug response, a promising new step towards personalized medicine in the treatment of T2D.


Journal of Clinical Investigation | 2010

Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state

Marc Foretz; Sophie Hébrard; Jocelyne Leclerc; Elham Zarrinpashneh; Maud Soty; Gilles Mithieux; Kei Sakamoto; Fabrizio Andreelli; Benoit Viollet

Metformin is widely used to treat hyperglycemia in individuals with type 2 diabetes. Recently the LKB1/AMP-activated protein kinase (LKB1/AMPK) pathway was proposed to mediate the action of metformin on hepatic gluconeogenesis. However, the molecular mechanism by which this pathway operates had remained elusive. Surprisingly, here we have found that in mice lacking AMPK in the liver, blood glucose levels were comparable to those in wild-type mice, and the hypoglycemic effect of metformin was maintained. Hepatocytes lacking AMPK displayed normal glucose production and gluconeogenic gene expression compared with wild-type hepatocytes. In contrast, gluconeogenesis was upregulated in LKB1-deficient hepatocytes. Metformin decreased expression of the gene encoding the catalytic subunit of glucose-6-phosphatase (G6Pase), while cytosolic phosphoenolpyruvate carboxykinase (Pepck) gene expression was unaffected in wild-type, AMPK-deficient, and LKB1-deficient hepatocytes. Surprisingly, metformin-induced inhibition of glucose production was amplified in both AMPK- and LKB1-deficient compared with wild-type hepatocytes. This inhibition correlated in a dose-dependent manner with a reduction in intracellular ATP content, which is crucial for glucose production. Moreover, metformin-induced inhibition of glucose production was preserved under forced expression of gluconeogenic genes through PPARgamma coactivator 1alpha (PGC-1alpha) overexpression, indicating that metformin suppresses gluconeogenesis via a transcription-independent process. In conclusion, we demonstrate that metformin inhibits hepatic gluconeogenesis in an LKB1- and AMPK-independent manner via a decrease in hepatic energy state.


Molecular and Cellular Biology | 1999

ADD1/SREBP-1c Is Required in the Activation of Hepatic Lipogenic Gene Expression by Glucose

Marc Foretz; Corinne Pacot; Isabelle Dugail; Patricia Lemarchand; Colette Guichard; Xavier Le Liepvre; Cécile Berthelier-Lubrano; Bruce M. Spiegelman; Jae Bum Kim; Pascal Ferré; Fabienne Foufelle

ABSTRACT The transcription of genes encoding proteins involved in the hepatic synthesis of lipids from glucose is strongly stimulated by carbohydrate feeding. It is now well established that in the liver, glucose is the main activator of the expression of this group of genes, with insulin having only a permissive role. While ADD1/SREBP-1 has been implicated in lipogenic gene expression through temporal association with food intake and ectopic gain-of-function experiments, no genetic evidence for a requirement for this factor in glucose-mediated gene expression has been established. We show here that the transcription of ADD1/SREBP-1c in primary cultures of hepatocytes is controlled positively by insulin and negatively by glucagon and cyclic AMP, establishing a link between this transcription factor and carbohydrate availability. Using adenovirus-mediated transfection of a powerful dominant negative form of ADD1/SREBP-1c in rat hepatocytes, we demonstrate that this factor is absolutely necessary for the stimulation by glucose of l-pyruvate kinase, fatty acid synthase, S14, and acetyl coenzyme A carboxylase gene expression. These results demonstrate that ADD1/SREBP-1c plays a crucial role in mediating the expression of lipogenic genes induced by glucose and insulin.


Diabetes | 2010

AMP-Activated Protein Kinase–Deficient Mice Are Resistant to the Metabolic Effects of Resveratrol

Jee Hyun Um; Sung-Jun Park; Hyeog Kang; Shutong Yang; Marc Foretz; Michael W. McBurney; Myung K. Kim; Benoit Viollet; Jay H. Chung

OBJECTIVE Resveratrol, a natural polyphenolic compound that is found in grapes and red wine, increases metabolic rate, insulin sensitivity, mitochondrial biogenesis, and physical endurance and reduces fat accumulation in mice. Although it is thought that resveratrol targets Sirt1, this is controversial because resveratrol also activates 5′ AMP-activated protein kinase (AMPK), which also regulates insulin sensitivity and mitochondrial biogenesis. Here, we use mice deficient in AMPKα1 or -α2 to determine whether the metabolic effects of resveratrol are mediated by AMPK. RESEARCH DESIGN AND METHODS Mice deficient in the catalytic subunit of AMPK (α1 or α2) and wild-type mice were fed a high-fat diet or high-fat diet supplemented with resveratrol for 13 weeks. Body weight was recorded biweekly and metabolic parameters were measured. We also used mouse embryonic fibroblasts deficient in AMPK to study the role of AMPK in resveratrol-mediated effects in vitro. RESULTS Resveratrol increased the metabolic rate and reduced fat mass in wild-type mice but not in AMPKα1−/− mice. In the absence of either AMPKα1 or -α2, resveratrol failed to increase insulin sensitivity, glucose tolerance, mitochondrial biogenesis, and physical endurance. Consistent with this, the expression of genes important for mitochondrial biogenesis was not induced by resveratrol in AMPK-deficient mice. In addition, resveratrol increased the NAD-to-NADH ratio in an AMPK-dependent manner, which may explain how resveratrol may activate Sirt1 indirectly. CONCLUSIONS We conclude that AMPK, which was thought to be an off-target hit of resveratrol, is the central target for the metabolic effects of resveratrol.


Nature | 2013

Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP

Russell A. Miller; Qingwei Chu; Jianxin Xie; Marc Foretz; Benoit Viollet; Morris J. Birnbaum

Glucose production by the liver is essential for providing a substrate for the brain during fasting. The inability of insulin to suppress hepatic glucose output is a major aetiological factor in the hyperglycaemia of type-2 diabetes mellitus and other diseases of insulin resistance. For fifty years, one of the few classes of therapeutics effective in reducing glucose production has been the biguanides, which include phenformin and metformin, the latter the most frequently prescribed drug for type-2 diabetes. Nonetheless, the mechanism of action of biguanides remains imperfectly understood. The suggestion a decade ago that metformin reduces glucose synthesis through activation of the enzyme AMP-activated protein kinase (AMPK) has recently been challenged by genetic loss-of-function experiments. Here we provide a novel mechanism by which metformin antagonizes the action of glucagon, thus reducing fasting glucose levels. In mouse hepatocytes, metformin leads to the accumulation of AMP and related nucleotides, which inhibit adenylate cyclase, reduce levels of cyclic AMP and protein kinase A (PKA) activity, abrogate phosphorylation of critical protein targets of PKA, and block glucagon-dependent glucose output from hepatocytes. These data support a mechanism of action for metformin involving antagonism of glucagon, and suggest an approach for the development of antidiabetic drugs.


Molecular and Cellular Biology | 2000

Characterization of the Role of AMP-Activated Protein Kinase in the Regulation of Glucose-Activated Gene Expression Using Constitutively Active and Dominant Negative Forms of the Kinase

Angela Woods; Dalila Azzout-Marniche; Marc Foretz; Silvie C. Stein; Patricia Lemarchand; Pascal Ferré; Fabienne Foufelle; David Carling

ABSTRACT In the liver, glucose induces the expression of a number of genes involved in glucose and lipid metabolism, e.g., those encoding L-type pyruvate kinase and fatty acid synthase. Recent evidence has indicated a role for the AMP-activated protein kinase (AMPK) in the inhibition of glucose-activated gene expression in hepatocytes. It remains unclear, however, whether AMPK is involved in the glucose induction of these genes. In order to study further the role of AMPK in regulating gene expression, we have generated two mutant forms of AMPK. One of these (α1312) acts as a constitutively active kinase, while the other (α1DN) acts as a dominant negative inhibitor of endogenous AMPK. We have used adenovirus-mediated gene transfer to express these mutants in primary rat hepatocytes in culture in order to determine their effect on AMPK activity and the transcription of glucose-activated genes. Expression of α1312 increased AMPK activity in hepatocytes and blocked completely the induction of a number of glucose-activated genes in response to 25 mM glucose. This effect is similar to that observed following activation of AMPK by 5-amino-imidazolecarboxamide riboside. Expression of α1DN markedly inhibited both basal and stimulated activity of endogenous AMPK but had no effect on the transcription of glucose-activated genes. Our results suggest that AMPK is involved in the inhibition of glucose-activated gene expression but not in the induction pathway. This study demonstrates that the two mutants we have described will provide valuable tools for studying the wider physiological role of AMPK.


The Journal of Physiology | 2006

Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders

Benoit Viollet; Marc Foretz; Bruno Guigas; Sandrine Horman; Renaud Dentin; Luc Bertrand; Louis Hue; Fabrizio Andreelli

It is now becoming evident that the liver has an important role in the control of whole body metabolism of energy nutrients. In this review, we focus on recent findings showing that AMP‐activated protein kinase (AMPK) plays a major role in the control of hepatic metabolism. AMPK integrates nutritional and hormonal signals to promote energy balance by switching on catabolic pathways and switching off ATP‐consuming pathways, both by short‐term effects on phosphorylation of regulatory proteins and by long‐term effects on gene expression. Activation of AMPK in the liver leads to the stimulation of fatty acid oxidation and inhibition of lipogenesis, glucose production and protein synthesis. Medical interest in the AMPK system has recently increased with the demonstration that AMPK could mediate some of the effects of the fat cell‐derived adiponectin and the antidiabetic drugs metformin and thiazolidinediones. These findings reinforce the idea that pharmacological activation of AMPK may provide, through signalling and metabolic and gene expression effects, a new strategy for the management of metabolic hepatic disorders linked to type 2 diabetes and obesity.


The EMBO Journal | 2010

Mitochondrial fission and remodelling contributes to muscle atrophy.

Vanina Romanello; Eleonora Guadagnin; Ligia C. Gomes; Ira V. Röder; Claudia Sandri; Yvonne Petersen; Giulia Milan; Eva Masiero; Paola Del Piccolo; Marc Foretz; Luca Scorrano; Rüdiger Rudolf; Marco Sandri

Mitochondria are crucial organelles in the production of energy and in the control of signalling cascades. A machinery of pro‐fusion and fission proteins regulates their morphology and subcellular localization. In muscle this results in an orderly pattern of intermyofibrillar and subsarcolemmal mitochondria. Muscular atrophy is a genetically controlled process involving the activation of the autophagy‐lysosome and the ubiquitin–proteasome systems. Whether and how the mitochondria are involved in muscular atrophy is unknown. Here, we show that the mitochondria are removed through autophagy system and that changes in mitochondrial network occur in atrophying muscles. Expression of the fission machinery is per se sufficient to cause muscle wasting in adult animals, by triggering organelle dysfunction and AMPK activation. Conversely, inhibition of the mitochondrial fission inhibits muscle loss during fasting and after FoxO3 overexpression. Mitochondrial‐dependent muscle atrophy requires AMPK activation as inhibition of AMPK restores muscle size in myofibres with altered mitochondria. Thus, disruption of the mitochondrial network is an essential amplificatory loop of the muscular atrophy programme.


Molecular and Cellular Biology | 2006

5′-AMP-Activated Protein Kinase (AMPK) Is Induced by Low-Oxygen and Glucose Deprivation Conditions Found in Solid-Tumor Microenvironments

Keith R. Laderoute; Khalid Amin; Joy M. Calaoagan; Merrill Knapp; Theresamai Le; Juan Orduna; Marc Foretz; Benoit Viollet

ABSTRACT Low oxygen gradients (hypoxia and anoxia) are important determinants of pathological conditions under which the tissue blood supply is deficient or defective, such as in solid tumors. We have been investigating the relationship between the activation of hypoxia-inducible factor 1 (HIF-1), the primary transcriptional regulator of the mammalian response to hypoxia, and 5′-AMP-activated protein kinase (AMPK), another regulatory system important for controlling cellular energy metabolism. In the present study, we used mouse embryo fibroblasts nullizygous for HIF-1α or AMPK expression to show that AMPK is rapidly activated in vitro by both physiological and pathophysiological low-oxygen conditions, independently of HIF-1 activity. These findings imply that HIF-1 and AMPK are components of a concerted cellular response to maintain energy homeostasis in low-oxygen or ischemic-tissue microenvironments. Finally, we used transformed derivatives of wild-type and HIF-1α- or AMPKα-null mouse embryo fibroblasts to determine whether AMPK is activated in vivo. We obtained evidence that AMPK is activated in authentic hypoxic tumor microenvironments and that this activity overlaps with regions of hypoxia detected by a chemical probe. We also showed that AMPK is important for the growth of this tumor model.


Acta Physiologica | 2009

AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives.

Benoit Viollet; Bruno Guigas; Jocelyne Leclerc; Sophie Hébrard; Louise Lantier; Rémi Mounier; Fabrizio Andreelli; Marc Foretz

As the liver is central in the maintenance of glucose homeostasis and energy storage, knowledge of the physiology as well as physiopathology of hepatic energy metabolism is a prerequisite to our understanding of whole‐body metabolism. Hepatic fuel metabolism changes considerably depending on physiological circumstances (fed vs. fasted state). In consequence, hepatic carbohydrate, lipid and protein synthesis/utilization are tightly regulated according to needs. Fatty liver and hepatic insulin resistance (both frequently associated with the metabolic syndrome) or increased hepatic glucose production (as observed in type 2 diabetes) resulted from alterations in substrates oxidation/storage balance in the liver. Because AMP‐activated protein kinase (AMPK) is considered as a cellular energy sensor, it is important to gain understanding of the mechanism by which hepatic AMPK coordinates hepatic energy metabolism. AMPK has been implicated as a key regulator of physiological energy dynamics by limiting anabolic pathways (to prevent further ATP consumption) and by facilitating catabolic pathways (to increase ATP generation). Activation of hepatic AMPK leads to increased fatty acid oxidation and simultaneously inhibition of hepatic lipogenesis, cholesterol synthesis and glucose production. In addition to a short‐term effect on specific enzymes, AMPK also modulates the transcription of genes involved in lipogenesis and mitochondrial biogenesis. The identification of AMPK targets in hepatic metabolism should be useful in developing treatments to reverse metabolic abnormalities of type 2 diabetes and the metabolic syndrome.

Collaboration


Dive into the Marc Foretz's collaboration.

Top Co-Authors

Avatar

Benoit Viollet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Bruno Guigas

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Benoit Viollet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louis Hue

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Luc Bertrand

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Nellie Taleux

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Sandrine Horman

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge