Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc Georg Willinger is active.

Publication


Featured researches published by Marc Georg Willinger.


Science | 2013

Galvanic Replacement Reactions in Metal Oxide Nanocrystals

Myoung Hwan Oh; Taekyung Yu; Seung-Ho Yu; Byungkwon Lim; K.-T. Ko; Marc Georg Willinger; Dong-Hwa Seo; Byung Hyo Kim; Min Gee Cho; Jae-Hoon Park; Kisuk Kang; Yung-Eun Sung; Nicola Pinna; Taeghwan Hyeon

Hollowing Out Metal Oxide Nanoparticles Corrosion is normally a problem, but it can be useful, for example, when you wish to create hollow metal nanoparticles, whereby the reduction of one metal species in solution drives the dissolution of the core of the particle. Oh et al. (p. 964; see the Perspective by Ibáñez and Cabot) adapted this approach to metal oxide nanoparticles by placing Mn3O4 nanocrystals in solution with Fe2+ ions, which replaces the nanocrystal exterior with γ-Fe2O3. At sufficiently high Fe2+ concentrations, hollow γ-Fe2O3 nanocages formed. These hollow structures could be used as anode materials for lithium ion batteries. Hollow mixed-metal oxide nanoparticles can be made by replacing the metal cations through redox reactions in solution. [Also see Perspective by Ibáñez and Cabot] Galvanic replacement reactions provide a simple and versatile route for producing hollow nanostructures with controllable pore structures and compositions. However, these reactions have previously been limited to the chemical transformation of metallic nanostructures. We demonstrated galvanic replacement reactions in metal oxide nanocrystals as well. When manganese oxide (Mn3O4) nanocrystals were reacted with iron(II) perchlorate, hollow box-shaped nanocrystals of Mn3O4/γ-Fe2O3 (“nanoboxes”) were produced. These nanoboxes ultimately transformed into hollow cagelike nanocrystals of γ-Fe2O3 (“nanocages”). Because of their nonequilibrium compositions and hollow structures, these nanoboxes and nanocages exhibited good performance as anode materials for lithium ion batteries. The generality of this approach was demonstrated with other metal pairs, including Co3O4/SnO2 and Mn3O4/SnO2.


Journal of the American Chemical Society | 2014

Spinel Mn–Co Oxide in N-Doped Carbon Nanotubes as a Bifunctional Electrocatalyst Synthesized by Oxidative Cutting

Anqi Zhao; Justus Masa; Wei Xia; Artjom Maljusch; Marc Georg Willinger; Guylhaine Clavel; Kunpeng Xie; Robert Schlögl; Wolfgang Schuhmann; Martin Muhler

The notorious instability of non-precious-metal catalysts for oxygen reduction and evolution is by far the single unresolved impediment for their practical applications. We have designed highly stable and active bifunctional catalysts for reversible oxygen electrodes by oxidative thermal scission, where we concurrently rupture nitrogen-doped carbon nanotubes and oxidize Co and Mn nanoparticles buried inside them to form spinel Mn-Co oxide nanoparticles partially embedded in the nanotubes. Impressively high dual activity for oxygen reduction and evolution is achieved using these catalysts, surpassing those of Pt/C, RuO2, and IrO2 and thus raising the prospect of functional low-cost, non-precious-metal bifunctional catalysts in metal-air batteries and reversible fuel cells, among others, for a sustainable and green energy future.


Angewandte Chemie | 2015

Oxide-Supported IrNiO x Core-Shell Particles as Efficient, Cost- Effective, and Stable Catalysts for Electrochemical Water Splitting**

Hong Nhan Nong; Hyung-Suk Oh; Tobias Reier; Elena Willinger; Marc Georg Willinger; Valeri Petkov; Detre Teschner; Peter Strasser

Active and highly stable oxide-supported IrNiO(x) core-shell catalysts for electrochemical water splitting are presented. IrNi(x)@IrO(x) nanoparticles supported on high-surface-area mesoporous antimony-doped tin oxide (IrNiO(x)/Meso-ATO) were synthesized from bimetallic IrNi(x) precursor alloys (PA-IrNi(x) /Meso-ATO) using electrochemical Ni leaching and concomitant Ir oxidation. Special emphasis was placed on Ni/NiO surface segregation under thermal treatment of the PA-IrNi(x)/Meso-ATO as well as on the surface chemical state of the particle/oxide support interface. Combining a wide array of characterization methods, we uncovered the detrimental effect of segregated NiO phases on the water splitting activity of core-shell particles. The core-shell IrNiO(x)/Meso-ATO catalyst displayed high water-splitting activity and unprecedented stability in acidic electrolyte providing substantial progress in the development of PEM electrolyzer anode catalysts with drastically reduced Ir loading and significantly enhanced durability.


Nano Letters | 2013

Observing Graphene Grow: Catalyst-Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper

Piran R. Kidambi; Bernhard C. Bayer; Raoul Blume; Zhu-Jun Wang; Carsten Baehtz; Robert S. Weatherup; Marc Georg Willinger; Robert Schloegl; Stephan Hofmann

Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of understanding of the underlying fundamental growth mechanisms and catalyst interactions. Graphene forms directly on metallic Cu during the high-temperature hydrocarbon exposure, whereby an upshift in the binding energies of the corresponding C1s XPS core level signatures is indicative of coupling between the Cu catalyst and the growing graphene. Minor carbon uptake into Cu can under certain conditions manifest itself as carbon precipitation upon cooling. Postgrowth, ambient air exposure even at room temperature decouples the graphene from Cu by (reversible) oxygen intercalation. The importance of these dynamic interactions is discussed for graphene growth, processing, and device integration.


Journal of Structural Biology | 2011

Mineral bridges in nacre

Antonio G. Checa; Julyan H. E. Cartwright; Marc Georg Willinger

We confirm with high-resolution techniques the existence of mineral bridges between superposed nacre tablets. In the towered nacre of both gastropods and the cephalopod Nautilus there are large bridges aligned along the tower axes, corresponding to gaps (150-200nm) in the interlamellar membranes. Gaps are produced by the interaction of the nascent tablets with a surface membrane that covers the nacre compartment. In the terraced nacre of bivalves bridges associated with elongated gaps in the interlamellar membrane (>100nm) have mainly been found at or close to the edges of superposed parental tablets. To explain this placement, we hypothesize that the interlamellar membrane breaks due to differences in osmotic pressure across it when the interlamellar space below becomes reduced at an advanced stage of calcification. In no cases are the minor connections between superimposed tablets (<60nm), earlier reported to be mineral bridges, found to be such.


ACS Nano | 2015

Direct Observation of Graphene Growth and Associated Copper Substrate Dynamics by in Situ Scanning Electron Microscopy

Zhu-Jun Wang; Gisela Weinberg; Qiang Zhang; Thomas Lunkenbein; Achim Klein-Hoffmann; Michalina Kurnatowska; Milivoj Plodinec; Qing Li; Lifeng Chi; Robert Schloegl; Marc Georg Willinger

This work highlights the importance of in situ experiments for an improved understanding of graphene growth on copper via metal-catalyzed chemical vapor deposition (CVD). Graphene growth inside the chamber of a modified environmental scanning electron microscope under relevant low-pressure CVD conditions allows visualizing structural dynamics of the active catalyst simultaneously with graphene nucleation and growth in an unparalleled way. It enables the observation of a complete CVD process from substrate annealing through graphene nucleation and growth and, finally, substrate cooling in real time and nanometer-scale resolution without the need of sample transfer. A strong dependence of surface dynamics such as sublimation and surface premelting on grain orientation is demonstrated, and the influence of substrate dynamics on graphene nucleation and growth is presented. Insights on the growth mechanism are provided by a simultaneous observation of the growth front propagation and nucleation rate. Furthermore, the role of trace amounts of oxygen during growth is discussed and related to graphene-induced surface reconstructions during cooling. Above all, this work demonstrates the potential of the method for in situ studies of surface dynamics on active metal catalysts.


Nano Letters | 2008

Vanadium Oxide Sensing Layer Grown on Carbon Nanotubes by a New Atomic Layer Deposition Process

Marc Georg Willinger; Giovanni Neri; Erwan Rauwel; A. Bonavita; G. Micali; Nicola Pinna

A new atomic layer deposition (ALD) process was applied for the homogeneous coating of carbon nanotubes with vanadium oxide. It permits the coating of the inner and outer surface with a highly conformal film of controllable thickness and, hence, the production of high surface area hybrid materials at a so far unprecedented quality. The ALD-coated tubes are used as active component in gas-sensing devices. They show electric responses that are directly related to the peculiar structure, i.e., the p-n heterojunction formed between the support and the film.


Journal of Materials Chemistry | 2011

Surfactant-free nonaqueous synthesis of lithium titanium oxide (LTO) nanostructures for lithium ion battery applications

Seung-Ho Yu; Andrea Pucci; Tobias Herntrich; Marc Georg Willinger; Seunghwan Baek; Yung-Eun Sung; Nicola Pinna

A one-pot template-free solvothermal synthesis of crystalline Li4Ti5O12 nanostructures based on the “benzyl alcohol route” is introduced. The 1–2 µm sized nanostructured spherical particles are constituted of nanocrystallites in the size range of a few nm. This is the first report showing that crystalline Li4Ti5O12 can be directly obtained by soft chemistry solution routes. The as-synthesized crystalline nanostructures show good lithium intercalation/deintercalation performances at high rates (up to 30 C) and good cycling stabilities. Annealing the nanostructures at 750 °C improves the performance, which approaches the theoretical capacity of Li4Ti5O12 with no noticeable (less than 5%) capacity loss after 200 cycles.


Angewandte Chemie | 2014

A case of strong metal-support interactions: combining advanced microscopy and model systems to elucidate the atomic structure of interfaces.

Marc Georg Willinger; Wei Zhang; Oleksandr Bondarchuk; Shamil K. Shaikhutdinov; Hans-Joachim Freund; Robert Schlögl

A symbiosis of advanced scanning probe and electron microscopy and a well-defined model system may provide a detailed picture of interfaces on nanostructured catalytic systems. This was demonstrated for Pt nanoparticles supported on iron oxide thin films which undergo encapsulation by supporting oxide as a result of strong metal-support interactions.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The key role of the surface membrane in why gastropod nacre grows in towers

Antonio G. Checa; Julyan H. E. Cartwright; Marc Georg Willinger

The nacre of gastropod molluscs is intriguingly stacked in towers. It is covered by a surface membrane, which protects the growing nacre surface from damage when the animal withdraws into its shell. The surface membrane is supplied by vesicles that adhere to it on its mantle side and secretes interlamellar membranes from the nacre side. Nacre tablets rapidly grow in height and later expand sideways; the part of the tablet formed during this initial growth phase is here called the core. During initial growth, the tips of the cores remain permanently submerged within the surface membrane. The interlamellar membranes, which otherwise separate the nacre tablet lamellae, do not extend across cores, which are aligned in stacked tablets forming the tower axis, and thus towers of nacre tablets are continuous along the central axis. We hypothesize that in gastropod nacre growth core formation precedes that of the interlamellar membrane. Once the core is complete, a new interlamellar membrane, which covers the area of the tablet outside the core, detaches from the surface membrane. In this way, the tower-like growth of gastropod nacre becomes comprehensible.

Collaboration


Dive into the Marc Georg Willinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dang Sheng Su

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xing Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge