Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc Hanewinkel is active.

Publication


Featured researches published by Marc Hanewinkel.


Journal of Environmental Management | 2014

Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management?

Marcus Lindner; Joanne Fitzgerald; Niklaus E. Zimmermann; Christopher Reyer; Sylvain Delzon; Ernst van der Maaten; Mart-Jan Schelhaas; Petra Lasch; Jeannette Eggers; Marieke van der Maaten-Theunissen; Felicitas Suckow; Achilleas Psomas; Benjamin Poulter; Marc Hanewinkel

The knowledge about potential climate change impacts on forests is continuously expanding and some changes in growth, drought induced mortality and species distribution have been observed. However despite a significant body of research, a knowledge and communication gap exists between scientists and non-scientists as to how climate change impact scenarios can be interpreted and what they imply for European forests. It is still challenging to advise forest decision makers on how best to plan for climate change as many uncertainties and unknowns remain and it is difficult to communicate these to practitioners and other decision makers while retaining emphasis on the importance of planning for adaptation. In this paper, recent developments in climate change observations and projections, observed and projected impacts on European forests and the associated uncertainties are reviewed and synthesised with a view to understanding the implications for forest management. Current impact assessments with simulation models contain several simplifications, which explain the discrepancy between results of many simulation studies and the rapidly increasing body of evidence about already observed changes in forest productivity and species distribution. In simulation models uncertainties tend to cascade onto one another; from estimating what future societies will be like and general circulation models (GCMs) at the global level, down to forest models and forest management at the local level. Individual climate change impact studies should not be uncritically used for decision-making without reflection on possible shortcomings in system understanding, model accuracy and other assumptions made. It is important for decision makers in forest management to realise that they have to take long-lasting management decisions while uncertainty about climate change impacts are still large. We discuss how to communicate about uncertainty - which is imperative for decision making - without diluting the overall message. Considering the range of possible trends and uncertainties in adaptive forest management requires expert knowledge and enhanced efforts for providing science-based decision support.


Nature | 2016

Plant functional traits have globally consistent effects on competition

Georges Kunstler; Daniel S. Falster; David A. Coomes; Francis K. C. Hui; Robert M. Kooyman; Daniel C. Laughlin; Lourens Poorter; Mark C. Vanderwel; Ghislain Vieilledent; S. Joseph Wright; Masahiro Aiba; Christopher Baraloto; John P. Caspersen; J. Hans C. Cornelissen; Sylvie Gourlet-Fleury; Marc Hanewinkel; Bruno Hérault; Jens Kattge; Hiroko Kurokawa; Yusuke Onoda; Josep Peñuelas; Hendrik Poorter; María Uriarte; Sarah J. Richardson; Paloma Ruiz-Benito; I-Fang Sun; Göran Ståhl; Nathan G. Swenson; Jill Thompson; Bertil Westerlund

Phenotypic traits and their associated trade-offs have been shown to have globally consistent effects on individual plant physiological functions, but how these effects scale up to influence competition, a key driver of community assembly in terrestrial vegetation, has remained unclear. Here we use growth data from more than 3 million trees in over 140,000 plots across the world to show how three key functional traits—wood density, specific leaf area and maximum height—consistently influence competitive interactions. Fast maximum growth of a species was correlated negatively with its wood density in all biomes, and positively with its specific leaf area in most biomes. Low wood density was also correlated with a low ability to tolerate competition and a low competitive effect on neighbours, while high specific leaf area was correlated with a low competitive effect. Thus, traits generate trade-offs between performance with competition versus performance without competition, a fundamental ingredient in the classical hypothesis that the coexistence of plant species is enabled via differentiation in their successional strategies. Competition within species was stronger than between species, but an increase in trait dissimilarity between species had little influence in weakening competition. No benefit of dissimilarity was detected for specific leaf area or wood density, and only a weak benefit for maximum height. Our trait-based approach to modelling competition makes generalization possible across the forest ecosystems of the world and their highly diverse species composition.


Annals of Forest Science | 2012

A review of decision-making approaches to handle uncertainty and risk in adaptive forest management under climate change

Rasoul Yousefpour; Jette Bredahl Jacobsen; Bo Jellesmark Thorsen; Henrik Meilby; Marc Hanewinkel; Karoline Oehler

Abstract• ContextThis review paper provides an overview of approaches to which we may resort for handling the complex decision problems involving uncertainty and risk that climate change implies for forest managers. Modelling approaches that could support adaptive management strategies seem to be called for, not only as climate change denotes increased economic uncertainty but also because new and more reliable information becomes available as time passes and climate changes.• AimsThe paper (1) provides a broad overview of state-of-the-art methods for optimal decision making under risk and uncertainty in forestry and (2) elaborates on the possible use of these methods in adaptive forest management under climate change.• MethodA survey of the current literature is carried out to identify approaches and developments that may prove most promising in relation to different challenges to the adaptive management of forest ecosystems under climate change.• ResultsMost studies focusing on changing, typically increasing, risks in forest management under climate change tend to build on existing approaches about changes in risk levels contingent on climate change scenarios.• ConclusionFinally, we discuss what to emphasise in future studies to improve the understanding of adaptive forest management and decision support tools needed to cope with climate change.


European Journal of Forest Research | 2011

Assessing natural hazards in forestry for risk management: a review

Marc Hanewinkel; Susan Hummel; Axel Albrecht

We address the problem of how to integrate risk assessment into forest management and therefore provide a comprehensive review of recent and past literature on risk analysis and modeling and, moreover, an evaluation and summary on these papers. We provide a general scheme on how to integrate concepts of risk into forest management decisions. After an overview of the risk management process and the main hazards in forests (storm, snow, insects, fire), the paper focuses on the principal methods used to assess risks from these hazards for commercial forestry. We review mechanistic models, empirical models, and expert systems and consider the needs for different spatial scales of risk assessment, from the regional to the single-tree level. In addition to natural hazards and their secondary effects, we deal with economic aspects of risk analysis. Monte Carlo simulations to deal with volatile timber prices and ways to include risk in classical Faustmann approaches are briefly discussed along with the integration of portfolio theory into forest management decision making and attitude toward risk. Special attention is paid to the implications for risk modeling under climate change.


PLOS ONE | 2012

Climate Change: Believing and Seeing Implies Adapting

Kristina Blennow; Johannes Persson; Margarida Tomé; Marc Hanewinkel

Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ±0.01) to 0.81 (SD ±0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ±0.008) to 0.91 (SD ±0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.


European Journal of Forest Research | 2012

How does silviculture affect storm damage in forests of south-western Germany? Results from empirical modeling based on long-term observations

Axel Albrecht; Marc Hanewinkel; Jürgen Bauhus; Ulrich Kohnle

Storms represent the most important disturbance factor in forests of Central Europe. Using data from long-term growth and yield experiments in Baden-Wuerttemberg (south-western Germany), which permit separation of storm damage from other causes of mortality for individual trees, we investigated the influence of soil, site, forest stand, and tree parameters on storm damage, especially focusing on the influence of silvicultural interventions. For this purpose, a four-step modeling approach was applied in order to extract the main risk factors for (1) the general stand-level occurrence of storm damage, (2) the occurrence of total stand damage, and (3) partial storm damage within stands. The estimated stand-level probability of storm damage obtained in step 3 was then offset in order to describe the damage potential for the individual trees within each partially damaged stand (4). Generalized linear mixed models were applied. Our results indicate that tree species and stand height are the most important storm risk factors, also for characterizing the long-term storm risk. Additionally, data on past timber removals and selective thinnings appear more important for explaining storm damage predisposition than for example stand density, soil and site conditions or topographic variables. When quantified with a weighting method (summarizing the relative weight of single predictors or groups of predictors), removals could explain up to 20% of storm risk. The stepwise modeling approach proved an important methodological feature of the analysis, since it enabled consideration of the large number of observations without damage (“zero inflation”) in a statistically correct way. These results form a reliable basis for quantifying forest management’s direct impact on the risk of storm damage.


Canadian Journal of Forest Research | 2008

Seventy-seven years of natural disturbances in a mountain forest area-the influence of storm, snow, and insect damage analysed with a long-term time series

Marc Hanewinkel; Johannes Breidenbach; Till NeeffT. Neeff; Edgar KublinE. Kublin

We investigated the effects of site properties, forest structure, and time on snow breakage, insect outbreaks, windthrow, and total damage for predominantly planted forests. A time series of forest damage in southwestern Germany spanning 77 years, from 1925 to 2001, was available along with a database on site properties and forest structure. The stat- istical modeling procedure successively addressed (i) probability of damage occurrence, (ii) timber loss in damaging events, and (iii) interaction among damage agents over time. Logistic and linear regressions were combined with multivari- ate autoregressive techniques. Natural disturbances were responsible for a total timber loss of 3.0 m 3 � ha -1 � year -1 . The dis- tribution of the timber loss values over the years and over sites and stands with different properties was modeled with a standard error of 6.7 m 3 � ha -1 � year -1 . Disturbances are more likely to occur in previously damaged stands. Storm events typically provoke subsequent insect outbreaks between 2 and 6 years later. Large windthrow and snow breakage events tend to occur periodically, once every 10th, 11th, or 15th year. Analysis of disturbances as a time series significantly en- hances understanding of forest risk processes.


Forest Ecology and Management | 2000

Modelling the conversion from even-aged to uneven-aged stands of Norway spruce (Picea abies L. Karst.) with a distance-dependent growth simulator

Marc Hanewinkel; Hans Pretzsch

Abstract The paper provides a conversion regime from even-aged to uneven-aged stands of Norway spruce (Picea abies L. Karst.). The conversion regime was tested by the distance-dependent single-tree simulator SILVA 2.1. The initial data for the simulation and the assumed site productivity were deduced using inventory data of the north Black Forest. The conversion regime was compared to a typical future-tree oriented age–class treatment system. Thereby four variants of the conversion regime, differing in the number and diameter of the ‘regeneration-funnels’ (gaps in the canopy of the stand) which were created during the ‘graded-regeneration-phase’, were compared to a basal-area oriented future-tree age–class treatment. A simulation-run of 110 years — divided into 22 periods of five years — was conducted. The analysis of the simulation-run showed that the possibilities to achieve uneven-aged structures in single-layered, even-aged stands through ‘structuring measures’ during thinning or target–diameter harvesting were very limited. The success of the conversion depended mainly on the success of the regeneration during the conversion. The early creation of ‘regeneration-funnels’ was linked to severe losses in increment and standing volume. As well as influences on different stand-parameters (e.g. stem-distribution) changes in structure-parameters caused by the conversion could be assessed. In particular, the modified Shannon-index did react distinctly to the implementation of the natural regeneration in the regeneration-funnels. Indeed, a steady state was only temporarily reached with the variant with the largest gaps. Finally, the results of the conversion experiment were subject to a critical review. Thus, the limits of the model in its current version and further research needs were discussed.


Global Change Biology | 2015

Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate.

Susanne Neuner; Axel Albrecht; Dominik A. Cullmann; Friedrich Engels; Verena C. Griess; W. Andreas Hahn; Marc Hanewinkel; Fabian Härtl; Christian Kölling; Kai Staupendahl; Thomas Knoke

Shifts in tree species distributions caused by climatic change are expected to cause severe losses in the economic value of European forestland. However, this projection disregards potential adaptation options such as tree species conversion, shorter production periods, or establishment of mixed species forests. The effect of tree species mixture has, as yet, not been quantitatively investigated for its potential to mitigate future increases in production risks. For the first time, we use survival time analysis to assess the effects of climate, species mixture and soil condition on survival probabilities for Norway spruce and European beech. Accelerated Failure Time (AFT) models based on an extensive dataset of almost 65,000 trees from the European Forest Damage Survey (FDS)--part of the European-wide Level I monitoring network--predicted a 24% decrease in survival probability for Norway spruce in pure stands at age 120 when unfavorable changes in climate conditions were assumed. Increasing species admixture greatly reduced the negative effects of unfavorable climate conditions, resulting in a decline in survival probabilities of only 7%. We conclude that future studies of forest management under climate change as well as forest policy measures need to take this, as yet unconsidered, strongly advantageous effect of tree species mixture into account.


Environmental Research Letters | 2017

Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

Christopher Reyer; Stephen Bathgate; Kristina Blennow; José G. Borges; Harald Bugmann; Sylvain Delzon; Sónia Faias; Jordi Garcia-Gonzalo; Barry Gardiner; José Ramón González-Olabarria; Carlos Gracia; Juan Guerra Hernández; Seppo Kellomäki; K. Kramer; Manfred J. Lexer; Marcus Lindner; Ernst van der Maaten; Michael Maroschek; Bart Muys; Bruce C. Nicoll; Marc Palahí; J.H.N. Palma; Joana Amaral Paulo; Heli Peltola; Timo Pukkala; Werner Rammer; Duncan Ray; Santiago Sabaté; Mart-Jan Schelhaas; Rupert Seidl

Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.

Collaboration


Dive into the Marc Hanewinkel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher Reyer

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

Marcus Lindner

European Forest Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niklaus E. Zimmermann

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Axel Albrecht

Forest Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gert-Jan Nabuurs

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Mart-Jan Schelhaas

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge