Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc Heijde is active.

Publication


Featured researches published by Marc Heijde.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation

Brian Palenik; Jane Grimwood; Andrea Aerts; Asaf Salamov; Nicholas H. Putnam; Chris L. Dupont; Richard A. Jorgensen; Stephane Rombauts; Kemin Zhou; Robert Otillar; Sabeeha S. Merchant; Terry Gaasterland; Carolyn A. Napoli; Karla Gendler; Olivier Vallon; Marc Heijde; Kamel Jabbari; Chris Bowler; Steven Robbens; Gregory Werner; Inna Dubchak; Gregory J. Pazour; Ian T. Paulsen; Jeremy Schmutz; Daniel S. Rokhsar; Yves Van de Peer; Igor V. Grigoriev

The smallest known eukaryotes, at ≈1-μm diameter, are Ostreococcus tauri and related species of marine phytoplankton. The genome of Ostreococcus lucimarinus has been completed and compared with that of O. tauri. This comparison reveals surprising differences across orthologous chromosomes in the two species from highly syntenic chromosomes in most cases to chromosomes with almost no similarity. Species divergence in these phytoplankton is occurring through multiple mechanisms acting differently on different chromosomes and likely including acquisition of new genes through horizontal gene transfer. We speculate that this latter process may be involved in altering the cell-surface characteristics of each species. In addition, the genome of O. lucimarinus provides insights into the unique metal metabolism of these organisms, which are predicted to have a large number of selenocysteine-containing proteins. Selenoenzymes are more catalytically active than similar enzymes lacking selenium, and thus the cell may require less of that protein. As reported here, selenoenzymes, novel fusion proteins, and loss of some major protein families including ones associated with chromatin are likely important adaptations for achieving a small cell size.


Trends in Plant Science | 2012

UV-B photoreceptor-mediated signalling in plants

Marc Heijde; Roman Ulm

Ultraviolet-B radiation (UV-B) is a key environmental signal that is specifically perceived by plants to promote UV acclimation and survival in sunlight. Whereas the plant photoreceptors for visible light are rather well characterised, the UV-B photoreceptor UVR8 was only recently described at the molecular level. Here, we review the current understanding of the UVR8 photoreceptor-mediated pathway in the context of UV-B perception mechanism, early signalling components and physiological responses. We further outline the commonalities in UV-B and visible light signalling as well as highlight differences between these pathways.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Negative feedback regulation of UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis.

Henriette Gruber; Marc Heijde; Werner Heller; Andreas Albert; Harald K. Seidlitz; Roman Ulm

Plants respond to low levels of UV-B radiation with a coordinated photomorphogenic response that allows acclimation to this environmental stress factor. The key players in this UV-B response are COP1 (an E3 ubiquitin ligase), UVR8 (a β-propeller protein), and HY5 (a bZIP transcription factor). We have shown previously that an elevated UV-B–specific response is associated with dwarf growth, indicating the importance of balancing UV-B–specific signaling. Negative regulators of this pathway are not known, however. Here, we describe two highly related WD40-repeat proteins, REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2, that interact directly with UVR8 as potent repressors of UV-B signaling. Both genes were transcriptionally activated by UV-B in a COP1-, UVR8-, and HY5-dependent manner. rup1 rup2 double mutants showed an enhanced response to UV-B and elevated UV-B tolerance after acclimation. Overexpression of RUP2 resulted in reduced UV-B–induced photomorphogenesis and impaired acclimation, leading to hypersensitivity to UV-B stress. These results are consistent with an important regulatory role for RUP1 and RUP2, which act downstream of UVR8–COP1 in a negative feedback loop impinging on UVR8 function, balancing UV-B defense measures and plant growth.


The Arabidopsis Book | 2013

The UVR8 UV-B Photoreceptor: Perception, Signaling and Response

Kimberley Tilbrook; Adriana Beatriz Arongaus; Melanie Binkert; Marc Heijde; Ruohe Yin; Roman Ulm

Ultraviolet-B radiation (UV-B) is an intrinsic part of sunlight that is accompanied by significant biological effects. Plants are able to perceive UV-B using the UV-B photoreceptor UVR8 which is linked to a specific molecular signaling pathway and leads to UV-B acclimation. Herein we review the biological process in plants from initial UV-B perception and signal transduction through to the known UV-B responses that promote survival in sunlight. The UVR8 UV-B photoreceptor exists as a homodimer that instantly monomerises upon UV-B absorption via specific intrinsic tryptophans which act as UV-B chromophores. The UVR8 monomer interacts with COP1, an E3 ubiquitin ligase, initiating a molecular signaling pathway that leads to gene expression changes. This signaling output leads to UVR8-dependent responses including UV-B-induced photomorphogenesis and the accumulation of UV-B-absorbing flavonols. Negative feedback regulation of the pathway is provided by the WD40-repeat proteins RUP1 and RUP2, which facilitate UVR8 redimerization, disrupting the UVR8-COP1 interaction. Despite rapid advancements in the field of recent years, further components of UVR8 UV-B signaling are constantly emerging, and the precise interplay of these and the established players UVR8, COP1, RUP1, RUP2 and HY5 needs to be defined. UVR8 UV-B signaling represents our further understanding of how plants are able to sense their light environment and adjust their growth accordingly.


EMBO Reports | 2009

Diatom PtCPF1 is a new cryptochrome/photolyase family member with DNA repair and transcription regulation activity

Sacha Coesel; Tomoko Ishikawa; Marc Heijde; Alessandra Rogato; Giovanni Finazzi; Takeshi Todo; Chris Bowler; Angela Falciatore

Members of the cryptochrome/photolyase family (CPF) are widely distributed throughout all kingdoms, and encode photosensitive proteins that typically show either photoreceptor or DNA repair activity. Animal and plant cryptochromes have lost DNA repair activity and now perform specialized photoperceptory functions, for example, plant cryptochromes regulate growth and circadian rhythms, whereas mammalian and insect cryptochromes act as transcriptional repressors that control the circadian clock. However, the functional differentiation between photolyases and cryptochromes is now being questioned. Here, we show that the PtCPF1 protein from the marine diatom Phaeodactylum tricornutum shows 6‐4 photoproduct repair activity and can act as a transcriptional repressor of the circadian clock in a heterologous mammalian cell system. Conversely, it seems to have a wide role in blue‐light‐regulated gene expression in diatoms. The protein might therefore represent a missing link in the evolution of CPFs, and act as a novel ultraviolet/blue light sensor in marine environments.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state

Marc Heijde; Roman Ulm

Plants require the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) for acclimation and survival in sunlight. Upon UV-B perception, UVR8 switches instantaneously from a homodimeric to monomeric configuration, which leads to interaction with the key signaling protein CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and induction of UV-B–protective responses. Here, we show that UVR8 monomerization is reversible in vivo, restoring the homodimeric ground state. We also demonstrate that the UVR8-interacting proteins REPRESSOR OF UV-B PHOTOMORPHOGENESIS (RUP)1 and RUP2 mediate UVR8 redimerization independently of COP1. UVR8 redimerization consequently disrupts the UVR8–COP1 interaction, which halts signaling. Our results identify a key role of RUP1- and RUP2-mediated UVR8 redimerization in photoreceptor inactivation, a crucial process that regenerates reactivatable UVR8 homodimers.


Plant Cell and Environment | 2010

Characterization of two members of the cryptochrome/photolyase family from Ostreococcus tauri provides insights into the origin and evolution of cryptochromes.

Marc Heijde; Gérald Zabulon; Florence Corellou; Tomoko Ishikawa; Johanna Brazard; Anwar Usman; Frédéric Sanchez; Pascal Plaza; Monique de Saint Martin; Angela Falciatore; Takeshi Todo; François-Yves Bouget; Chris Bowler

Cryptochromes (Crys) are blue light receptors believed to have evolved from the DNA photolyase protein family, implying that light control and light protection share a common ancient origin. In this paper, we report the identification of five genes of the Cry/photolyase family (CPF) in two green algae of the Ostreococcus genus. Phylogenetic analyses were used to confidently assign three of these sequences to cyclobutane pyrimidine dimer (CPD) photolyases, one of them to a DASH-type Cry, and a third CPF gene has high homology with the recently described diatom CPF1 that displays a bifunctional activity. Both purified OtCPF1 and OtCPF2 proteins show non-covalent binding to flavin adenine dinucleotide (FAD), and additionally to 5,10-methenyl-tetrahydrofolate (MTHF) for OtCPF2. Expression analyses revealed that all five CPF members of Ostreococcus tauri are regulated by light. Furthermore, we show that OtCPF1 and OtCPF2 display photolyase activity and that OtCPF1 is able to interact with the CLOCK:BMAL heterodimer, transcription factors regulating circadian clock function in other organisms. Finally, we provide evidence for the involvement of OtCPF1 in the maintenance of the Ostreococcus circadian clock. This work improves our understanding of the evolutionary transition between photolyases and Crys.


PLOS ONE | 2009

Genome-Wide Transcriptome Analyses of Silicon Metabolism in Phaeodactylum tricornutum Reveal the Multilevel Regulation of Silicic Acid Transporters

Guillaume Sapriel; Michelle Quinet; Marc Heijde; Laurent Jourdren; Véronique Tanty; Guangzuo Luo; Stéphane Le Crom; Pascal J. Lopez

Background Diatoms are largely responsible for production of biogenic silica in the global ocean. However, in surface seawater, Si(OH)4 can be a major limiting factor for diatom productivity. Analyzing at the global scale the genes networks involved in Si transport and metabolism is critical in order to elucidate Si biomineralization, and to understand diatoms contribution to biogeochemical cycles. Methodology/Principal Findings Using whole genome expression analyses we evaluated the transcriptional response to Si availability for the model species Phaeodactylum tricornutum. Among the differentially regulated genes we found genes involved in glutamine-nitrogen pathways, encoding putative extracellular matrix components, or involved in iron regulation. Some of these compounds may be good candidates for intracellular intermediates involved in silicic acid storage and/or intracellular transport, which are very important processes that remain mysterious in diatoms. Expression analyses and localization studies gave the first picture of the spatial distribution of a silicic acid transporter in a diatom model species, and support the existence of transcriptional and post-transcriptional regulations. Conclusions/Significance Our global analyses revealed that about one fourth of the differentially expressed genes are organized in clusters, underlying a possible evolution of P. tricornutum genome, and perhaps other pennate diatoms, toward a better optimization of its response to variable environmental stimuli. High fitness and adaptation of diatoms to various Si levels in marine environments might arise in part by global regulations from gene (expression level) to genomic (organization in clusters, dosage compensation by gene duplication), and by post-transcriptional regulation and spatial distribution of SIT proteins.


Genome Biology | 2010

Digital expression profiling of novel diatom transcripts provides insight into their biological functions

Uma Maheswari; Kamel Jabbari; Jean-Louis Petit; Betina M. Porcel; Andrew E. Allen; Jean-Paul Cadoret; Alessandra De Martino; Marc Heijde; Raymond Kaas; Pascal J. Lopez; Véronique Martin-Jézéquel; Agnès Meichenin; Thomas Mock; Micaela S. Parker; Assaf Vardi; E. Virginia Armbrust; Jean Weissenbach; Michael Katinka; Chris Bowler

BackgroundDiatoms represent the predominant group of eukaryotic phytoplankton in the oceans and are responsible for around 20% of global photosynthesis. Two whole genome sequences are now available. Notwithstanding, our knowledge of diatom biology remains limited because only around half of their genes can be ascribed a function based onhomology-based methods. High throughput tools are needed, therefore, to associate functions with diatom-specific genes.ResultsWe have performed a systematic analysis of 130,000 ESTs derived from Phaeodactylum tricornutum cells grown in 16 different conditions. These include different sources of nitrogen, different concentrations of carbon dioxide, silicate and iron, and abiotic stresses such as low temperature and low salinity. Based on unbiased statistical methods, we have catalogued transcripts with similar expression profiles and identified transcripts differentially expressed in response to specific treatments. Functional annotation of these transcripts provides insights into expression patterns of genes involved in various metabolic and regulatory pathways and into the roles of novel genes with unknown functions. Specific growth conditions could be associated with enhanced gene diversity, known gene product functions, and over-representation of novel transcripts. Comparative analysis of data from the other sequenced diatom, Thalassiosira pseudonana, helped identify several unique diatom genes that are specifically regulated under particular conditions, thus facilitating studies of gene function, genome annotation and the molecular basis of species diversity.ConclusionsThe digital gene expression database represents a new resource for identifying candidate diatom-specific genes involved in processes of major ecological relevance.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Constitutively active UVR8 photoreceptor variant in Arabidopsis

Marc Heijde; Melanie Binkert; Ruohe Yin; Florence Ares-Orpel; Luca Rizzini; Eveline Van De Slijke; Geert Persiau; Jonah Nolf; Kris Gevaert; Geert De Jaeger; Roman Ulm

Significance Sunlight is an essential environmental factor for photosynthetic plants and ultimately for life on Earth, which is sustained through plants as fundamental source of food. However, plants have a love/hate relationship with sunlight and must be protected from potentially harmful UV-B radiation. The UV-B photoreceptor UVR8 is of great importance in mounting UV-protective responses and thus for survival in sunlight. Based on our understanding of UVR8 signaling, we have engineered a UVR8 variant that is constitutively active in transgenic plants. The generation of a constitutively active photoreceptor variant is an important step in understanding the molecular signaling mechanism and may hold opportunities for crop improvement. Arabidopsis thaliana UV RESISTANCE LOCUS 8 (UVR8) is a UV-B photoreceptor that initiates photomorphogenic responses underlying acclimation and UV-B tolerance in plants. UVR8 is a homodimer in its ground state, and UV-B exposure results in its instantaneous monomerization followed by interaction with CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), a major factor in UV-B signaling. UV-B photoreception by UVR8 is based on intrinsic tryptophan aromatic amino acid residues, with tryptophan-285 as the main chromophore. We generated transgenic plants expressing UVR8 with a single amino acid change of tryptophan-285 to alanine. UVR8W285A appears monomeric and shows UV-B–independent interaction with COP1. Phenotypically, the plants expressing UVR8W285A exhibit constitutive photomorphogenesis associated with constitutive activation of target genes, elevated levels of anthocyanins, and enhanced, acclimation-independent UV-B tolerance. Moreover, we have identified COP1, REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 and 2 (RUP1 and RUP2), and the SUPPRESSOR OF PHYA-105 (SPA) family as proteins copurifying with UVR8W285A. Whereas COP1, RUP1, and RUP2 are known to directly interact with UVR8, we show that SPA1 interacts with UVR8 indirectly through COP1. We conclude that UVR8W285A is a constitutively active UVR8 photoreceptor variant in Arabidopsis, as is consistent with the crucial importance of monomer formation and COP1 binding for UVR8 activity.

Collaboration


Dive into the Marc Heijde's collaboration.

Top Co-Authors

Avatar

Chris Bowler

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gérald Zabulon

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Johanna Brazard

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Kamel Jabbari

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Pascal Plaza

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Angela Falciatore

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Sacha Coesel

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Andrew E. Allen

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge