Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc I. Diamond is active.

Publication


Featured researches published by Marc I. Diamond.


Journal of Biological Chemistry | 2009

Propagation of tau misfolding from the outside to the inside of a cell.

Bess Frost; Rachel L. Jacks; Marc I. Diamond

Tauopathies are neurodegenerative diseases characterized by aggregation of the microtubule-associated protein Tau in neurons and glia. Although Tau is normally considered an intracellular protein, Tau aggregates are observed in the extracellular space, and Tau peptide is readily detected in the cerebrospinal fluid of patients. Tau aggregation occurs in many diseases, including Alzheimer disease and frontotemporal dementia. Tau pathology begins in discrete, disease-specific regions but eventually involves much larger areas of the brain. It is unknown how this propagation of Tau misfolding occurs. We hypothesize that extracellular Tau aggregates can transmit a misfolded state from the outside to the inside of a cell, similar to prions. Here we show that extracellular Tau aggregates, but not monomer, are taken up by cultured cells. Internalized Tau aggregates displace tubulin, co-localize with dextran, a marker of fluid-phase endocytosis, and induce fibrillization of intracellular full-length Tau. These intracellular fibrils are competent to seed fibril formation of recombinant Tau monomer in vitro. Finally, we observed that newly aggregated intracellular Tau transfers between co-cultured cells. Our data indicate that Tau aggregates can propagate a fibrillar, misfolded state from the outside to the inside of a cell. This may have important implications for understanding how protein misfolding spreads through the brains of tauopathy patients, and it is potentially relevant to myriad neurodegenerative diseases associated with protein misfolding.


Nature Reviews Neuroscience | 2010

Prion-like mechanisms in neurodegenerative diseases

Bess Frost; Marc I. Diamond

Many non-infectious neurodegenerative diseases are associated with the accumulation of fibrillar proteins. These diseases all exhibit features that are reminiscent of those of prionopathies, including phenotypic diversity and the propagation of pathology. Furthermore, emerging studies of amyloid-β, α-synuclein and tau — proteins implicated in common neurodegenerative diseases — suggest that they share key biophysical and biochemical characteristics with prions. Propagation of protein misfolding in these diseases may therefore occur through mechanisms similar to those that underlie prion pathogenesis. If this hypothesis is verified in vivo, it will suggest new therapeutic strategies to block propagation of protein misfolding throughout the brain.


Journal of Biological Chemistry | 2012

Trans-cellular propagation of Tau aggregation by fibrillar species

Najla Kfoury; Brandon B. Holmes; Hong Jiang; David M. Holtzman; Marc I. Diamond

Background: Trans-cellular propagation of aggregation may be important in neurodegeneration, but mechanisms are unknown. Results: Tau fibrils are secreted into the extracellular space, where they directly trigger aggregation in recipient cells by contacting native protein. Conclusion: Trans-cellular movement of Tau fibrils seeds subsequent aggregation. Significance: Therapies that block trans-cellular movement, including antibodies, may have an important role in neurodegenerative diseases. Aggregation of the microtubule associated protein Tau is associated with several neurodegenerative disorders, including Alzheimer disease and frontotemporal dementia. In Alzheimer disease, Tau pathology spreads progressively throughout the brain, possibly along existing neural networks. However, it is still unclear how the propagation of Tau misfolding occurs. Intriguingly, in animal models, vaccine-based therapies have reduced Tau and synuclein pathology by uncertain mechanisms, given that these proteins are intracellular. We have previously speculated that trans-cellular propagation of misfolding could be mediated by a process similar to prion pathogenesis, in which fibrillar Tau aggregates spread pathology from cell to cell. However, there has been little evidence to demonstrate true trans-cellular propagation of Tau misfolding, in which Tau aggregates from one cell directly contact Tau protein in the recipient cell to trigger further aggregation. Here we have observed that intracellular Tau fibrils are directly released into the medium and then taken up by co-cultured cells. Internalized Tau aggregates induce fibrillization of intracellular Tau in these naive recipient cells via direct protein-protein contact that we demonstrate using FRET. Tau aggregation can be amplified across several generations of cells. An anti-Tau monoclonal antibody blocks Tau aggregate propagation by trapping fibrils in the extracellular space and preventing their uptake. Thus, propagation of Tau protein misfolding among cells can be mediated by release and subsequent uptake of fibrils that directly contact native protein in recipient cells. These results support the model of aggregate propagation by templated conformational change and suggest a mechanism for vaccine-based therapies in neurodegenerative diseases.


Neuron | 2013

Anti-Tau Antibodies that Block Tau Aggregate Seeding In Vitro Markedly Decrease Pathology and Improve Cognition In Vivo

Kiran Yanamandra; Najla Kfoury; Hong Jiang; Thomas E. Mahan; Shengmei Ma; Susan E. Maloney; David F. Wozniak; Marc I. Diamond; David M. Holtzman

Tau aggregation occurs in neurodegenerative diseases including Alzheimers disease and many other disorders collectively termed tauopathies. trans-cellular propagation of tau pathology, mediated by extracellular tau aggregates, may underlie pathogenesis of these conditions. P301S tau transgenic mice express mutant human tau protein and develop progressive tau pathology. Using a cell-based biosensor assay, we screened anti-tau monoclonal antibodies for their ability to block seeding activity present in P301S brain lysates. We infused three effective antibodies or controls into the lateral ventricle of P301S mice for 3 months. The antibodies markedly reduced hyperphosphorylated, aggregated, and insoluble tau. They also blocked development of tau seeding activity detected in brain lysates using the biosensor assay, reduced microglial activation, and improved cognitive deficits. These data imply a central role for extracellular tau aggregates in the development of pathology. They also suggest that immunotherapy specifically designed to block trans-cellular aggregate propagation will be a productive treatment strategy.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds

Brandon B. Holmes; Sarah L. DeVos; Najla Kfoury; Mei Li; Rachel Jacks; Kiran Yanamandra; Mohand Ouidir Ouidja; Frances M. Brodsky; Jayne Marasa; Devika P. Bagchi; Paul T. Kotzbauer; Timothy M. Miller; Dulce Papy-Garcia; Marc I. Diamond

Significance Prion-like propagation of proteopathic seeds may underlie the progression of neurodegenerative diseases, including the tauopathies and synucleinopathies. Aggregate entry into the cell is a crucial step in transcellular propagation. We used chemical, enzymatic, and genetic methods to identify heparan sulfate proteoglycans as critical mediators of tau aggregate binding and uptake, and subsequent seeding of normal intracellular tau. This pathway mediates aggregate uptake in cultured cells, primary neurons, and brain. α-Synuclein fibrils use the same entry mechanism to seed intracellular aggregation, whereas huntingtin fibrils do not. This establishes the molecular basis for a key step in aggregate propagation. Recent experimental evidence suggests that transcellular propagation of fibrillar protein aggregates drives the progression of neurodegenerative diseases in a prion-like manner. This phenomenon is now well described in cell and animal models and involves the release of protein aggregates into the extracellular space. Free aggregates then enter neighboring cells to seed further fibrillization. The mechanism by which aggregated extracellular proteins such as tau and α-synuclein bind and enter cells to trigger intracellular fibril formation is unknown. Prior work indicates that prion protein aggregates bind heparan sulfate proteoglycans (HSPGs) on the cell surface to transmit pathologic processes. Here, we find that tau fibril uptake also occurs via HSPG binding. This is blocked in cultured cells and primary neurons by heparin, chlorate, heparinase, and genetic knockdown of a key HSPG synthetic enzyme, Ext1. Interference with tau binding to HSPGs prevents recombinant tau fibrils from inducing intracellular aggregation and blocks transcellular aggregate propagation. In vivo, a heparin mimetic, F6, blocks neuronal uptake of stereotactically injected tau fibrils. Finally, uptake and seeding by α-synuclein fibrils, but not huntingtin fibrils, occurs by the same mechanism as tau. This work suggests a unifying mechanism of cell uptake and propagation for tauopathy and synucleinopathy.


The Journal of Neuroscience | 2011

In Vivo Microdialysis Reveals Age-Dependent Decrease of Brain Interstitial Fluid Tau Levels in P301S Human Tau Transgenic Mice

Kaoru Yamada; John R. Cirrito; Floy R. Stewart; Hong Jiang; Mary Beth Finn; Brandon B. Holmes; Lester I. Binder; Eva Maria Mandelkow; Marc I. Diamond; Virginia M.-Y. Lee; David M. Holtzman

Although tau is a cytoplasmic protein, it is also found in brain extracellular fluids, e.g., CSF. Recent findings suggest that aggregated tau can be transferred between cells and extracellular tau aggregates might mediate spread of tau pathology. Despite these data, details of whether tau is normally released into the brain interstitial fluid (ISF), its concentration in ISF in relation to CSF, and whether ISF tau is influenced by its aggregation are unknown. To address these issues, we developed a microdialysis technique to analyze monomeric ISF tau levels within the hippocampus of awake, freely moving mice. We detected tau in ISF of wild-type mice, suggesting that tau is released in the absence of neurodegeneration. ISF tau was significantly higher than CSF tau and their concentrations were not significantly correlated. Using P301S human tau transgenic mice (P301S tg mice), we found that ISF tau is fivefold higher than endogenous murine tau, consistent with its elevated levels of expression. However, following the onset of tau aggregation, monomeric ISF tau decreased markedly. Biochemical analysis demonstrated that soluble tau in brain homogenates decreased along with the deposition of insoluble tau. Tau fibrils injected into the hippocampus decreased ISF tau, suggesting that extracellular tau is in equilibrium with extracellular or intracellular tau aggregates. This technique should facilitate further studies of tau secretion, spread of tau pathology, the effects of different disease states on ISF tau, and the efficacy of experimental treatments.


Journal of Biological Chemistry | 2009

Conformational Diversity of Wild-type Tau Fibrils Specified by Templated Conformation Change

Bess Frost; Julian Ollesch; Holger Wille; Marc I. Diamond

Tauopathies are sporadic and genetic neurodegenerative diseases characterized by aggregation of the microtubule-associated protein Tau. Tau pathology occurs in over 20 phenotypically distinct neurodegenerative diseases, including Alzheimer disease and frontotemporal dementia. The molecular basis of this diversity among sporadic tauopathies is unknown, but distinct fibrillar wild-type (WT) Tau conformations could play a role. Using Fourier transform infrared spectroscopy, circular dichroism, and electron microscopy, we show that WT Tau fibrils and P301L/V337M Tau fibrils have distinct secondary structures, fragilities, and morphologies. Furthermore, P301L/V337M fibrillar seeds induce WT Tau monomer to form a novel fibrillar conformation, termed WT*, that is maintained over multiple seeding reactions. WT* has secondary structure, fragility, and morphology that are similar to P301L/V337M fibrils and distinct from WT fibrils. WT Tau is thus capable of conformational diversity that arises via templated conformation change, as has been described for amyloid β, β2-microglobulin, and prion proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Proteopathic tau seeding predicts tauopathy in vivo

Brandon B. Holmes; Jennifer L. Furman; Thomas E. Mahan; Tritia R. Yamasaki; Hilda Mirbaha; William C. Eades; Larisa Belaygorod; Nigel J. Cairns; David M. Holtzman; Marc I. Diamond

Significance Prion-like propagation of proteopathic seeds may underlie the progression of neurodegenerative diseases, including the tauopathies and synucleinopathies. We aimed to construct a versatile and simple cell assay to sensitively and specifically detect proteopathic seeding activity. Using a combination of FRET flow cytometry and a tau monoclonal FRET biosensor cell line, we report seed detection in the femtomolar range. This assay is easily applied to human brain homogenates and selectively responds to Alzheimers disease but not Huntingtons disease brains. By comparing seeding activity in a mouse model of human tauopathy, we demonstrate detection of proteopathic seeding far in advance of standard histopathological markers. Proteopathic seeding is thus an early marker of tauopathy, consistent with a causal role for tau seeds in neurodegeneration. Transcellular propagation of protein aggregates, or proteopathic seeds, may drive the progression of neurodegenerative diseases in a prion-like manner. In tauopathies such as Alzheimer’s disease, this model predicts that tau seeds propagate pathology through the brain via cell–cell transfer in neural networks. The critical role of tau seeding activity is untested, however. It is unknown whether seeding anticipates and correlates with subsequent development of pathology as predicted for a causal agent. One major limitation has been the lack of a robust assay to measure proteopathic seeding activity in biological specimens. We engineered an ultrasensitive, specific, and facile FRET-based flow cytometry biosensor assay based on expression of tau or synuclein fusions to CFP and YFP, and confirmed its sensitivity and specificity to tau (∼300 fM) and synuclein (∼300 pM) fibrils. This assay readily discriminates Alzheimer’s disease vs. Huntingtons disease and aged control brains. We then carried out a detailed time-course study in P301S tauopathy mice, comparing seeding activity versus histological markers of tau pathology, including MC1, AT8, PG5, and Thioflavin S. We detected robust seeding activity at 1.5 mo, >1 mo before the earliest histopathological stain. Proteopathic tau seeding is thus an early and robust marker of tauopathy, suggesting a proximal role for tau seeds in neurodegeneration.


Journal of Biological Chemistry | 2010

Interaction with Polyglutamine Aggregates Reveals a Q/N-rich Domain in TDP-43

Rodrigo A. Fuentealba; Maria Udan; Shaughn Bell; Iga Wegorzewska; Jieya Shao; Marc I. Diamond; Conrad C. Weihl; Robert H. Baloh

The identification of pathologic TDP-43 aggregates in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration, followed by the discovery of dominantly inherited point mutations in TDP-43 in familial ALS, have been critical insights into the mechanism of these untreatable neurodegenerative diseases. However, the biochemical basis of TDP-43 aggregation and the mechanism of how mutations in TDP-43 lead to disease remain enigmatic. In efforts to understand how TDP-43 alters its cellular localization in response to proteotoxic stress, we found that TDP-43 is sequestered into polyglutamine aggregates. Furthermore, we found that binding to polyglutamine aggregates requires a previously uncharacterized glutamine/asparagine (Q/N)-rich region in the C-terminal domain of TDP-43. Sequestration into polyglutamine aggregates causes TDP-43 to be cleared from the nucleus and become detergent-insoluble. Finally, we observed that sequestration into polyglutamine aggregates led to loss of TDP-43-mediated splicing in the nucleus and that polyglutamine toxicity could be partially rescued by increasing expression of TDP-43. These data indicate pathologic sequestration into polyglutamine aggregates, and loss of nuclear TDP-43 function may play an unexpected role in polyglutamine disease pathogenesis. Furthermore, as Q/N domains have a strong tendency to self-aggregate and in some cases can function as prions, the identification of a Q/N domain in TDP-43 has important implications for the mechanism of pathologic aggregation of TDP-43 in ALS and other neurodegenerative diseases.


Nature Neuroscience | 2016

Neuronal activity enhances tau propagation and tau pathology in vivo

Jessica W. Wu; S. Abid Hussaini; Isle M Bastille; Gustavo A. Rodriguez; Ana Mrejeru; Kelly Rilett; David W. Sanders; Casey Cook; Hongjun Fu; Rick A C M Boonen; Mathieu Herman; Eden Nahmani; Sheina Emrani; Y Helen Figueroa; Marc I. Diamond; Catherine L. Clelland; Selina Wray; Karen Duff

Tau protein can transfer between neurons transneuronally and trans-synaptically, which is thought to explain the progressive spread of tauopathy observed in the brain of patients with Alzheimers disease. Here we show that physiological tau released from donor cells can transfer to recipient cells via the medium, suggesting that at least one mechanism by which tau can transfer is via the extracellular space. Neuronal activity has been shown to regulate tau secretion, but its effect on tau pathology is unknown. Using optogenetic and chemogenetic approaches, we found that increased neuronal activity stimulates the release of tau in vitro and enhances tau pathology in vivo. These data have implications for disease pathogenesis and therapeutic strategies for Alzheimers disease and other tauopathies.

Collaboration


Dive into the Marc I. Diamond's collaboration.

Top Co-Authors

Avatar

Brandon B. Holmes

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Holtzman

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jieya Shao

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Sarah K. Kaufman

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Najla Kfoury

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Apurwa Sharma

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

David W. Sanders

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hong Jiang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Hilda Mirbaha

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge