Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc L. Reitman is active.

Publication


Featured researches published by Marc L. Reitman.


Nature Medicine | 2001

The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity.

Toshimasa Yamauchi; Junji Kamon; Hironori Waki; Yasuo Terauchi; Naoto Kubota; Kazuo Hara; Y. Mori; Tomohiro Ide; Koji Murakami; Nobuyo Tsuboyama-Kasaoka; Osamu Ezaki; Yauso Akanuma; Oksana Gavrilova; Charles Vinson; Marc L. Reitman; Hiroyuki Kagechika; Koichi Shudo; Madoka Yoda; Yasuko Nakano; Kazuyuki Tobe; Ryozo Nagai; Satoshi Kimura; Motowo Tomita; Philippe Froguel; Takashi Kadowaki

Adiponectin is an adipocyte-derived hormone. Recent genome-wide scans have mapped a susceptibility locus for type 2 diabetes and metabolic syndrome to chromosome 3q27, where the gene encoding adiponectin is located. Here we show that decreased expression of adiponectin correlates with insulin resistance in mouse models of altered insulin sensitivity. Adiponectin decreases insulin resistance by decreasing triglyceride content in muscle and liver in obese mice. This effect results from increased expression of molecules involved in both fatty-acid combustion and energy dissipation in muscle. Moreover, insulin resistance in lipoatrophic mice was completely reversed by the combination of physiological doses of adiponectin and leptin, but only partially by either adiponectin or leptin alone. We conclude that decreased adiponectin is implicated in the development of insulin resistance in mouse models of both obesity and lipoatrophy. These data also indicate that the replenishment of adiponectin might provide a novel treatment modality for insulin resistance and type 2 diabetes.


Nature | 2008

Genetics of gene expression and its effect on disease.

Valur Emilsson; Gudmar Thorleifsson; Bin Zhang; Amy Leonardson; Florian Zink; Jun Zhu; Sonia Carlson; Agnar Helgason; G. Bragi Walters; Steinunn Gunnarsdottir; Magali Mouy; Valgerdur Steinthorsdottir; Gudrun H. Eiriksdottir; Gyda Bjornsdottir; Inga Reynisdottir; Daniel F. Gudbjartsson; Anna Helgadottir; Aslaug Jonasdottir; Adalbjorg Jonasdottir; Unnur Styrkarsdottir; Solveig Gretarsdottir; Kristinn P. Magnusson; Hreinn Stefansson; Ragnheidur Fossdal; Kristleifur Kristjansson; Hjörtur Gislason; Tryggvi Stefansson; Björn Geir Leifsson; Unnur Thorsteinsdottir; John Lamb

Common human diseases result from the interplay of many genes and environmental factors. Therefore, a more integrative biology approach is needed to unravel the complexity and causes of such diseases. To elucidate the complexity of common human diseases such as obesity, we have analysed the expression of 23,720 transcripts in large population-based blood and adipose tissue cohorts comprehensively assessed for various phenotypes, including traits related to clinical obesity. In contrast to the blood expression profiles, we observed a marked correlation between gene expression in adipose tissue and obesity-related traits. Genome-wide linkage and association mapping revealed a highly significant genetic component to gene expression traits, including a strong genetic effect of proximal (cis) signals, with 50% of the cis signals overlapping between the two tissues profiled. Here we demonstrate an extensive transcriptional network constructed from the human adipose data that exhibits significant overlap with similar network modules constructed from mouse adipose data. A core network module in humans and mice was identified that is enriched for genes involved in the inflammatory and immune response and has been found to be causally associated to obesity-related traits.


Nature Genetics | 2005

An integrative genomics approach to infer causal associations between gene expression and disease

Eric E. Schadt; John Lamb; Xia Yang; Jun Zhu; Steve Edwards; Debraj GuhaThakurta; Solveig K. Sieberts; Stephanie A. Monks; Marc L. Reitman; Chunsheng Zhang; Pek Yee Lum; Amy Leonardson; Rolf Thieringer; Joseph M. Metzger; Liming Yang; John Castle; Haoyuan Zhu; Shera F Kash; Thomas A. Drake; Alan B. Sachs; Aldons J. Lusis

A key goal of biomedical research is to elucidate the complex network of gene interactions underlying complex traits such as common human diseases. Here we detail a multistep procedure for identifying potential key drivers of complex traits that integrates DNA-variation and gene-expression data with other complex trait data in segregating mouse populations. Ordering gene expression traits relative to one another and relative to other complex traits is achieved by systematically testing whether variations in DNA that lead to variations in relative transcript abundances statistically support an independent, causative or reactive function relative to the complex traits under consideration. We show that this approach can predict transcriptional responses to single gene–perturbation experiments using gene-expression data in the context of a segregating mouse population. We also demonstrate the utility of this approach by identifying and experimentally validating the involvement of three new genes in susceptibility to obesity.


Journal of Biological Chemistry | 1997

Uncoupling Protein-3 Is a Mediator of Thermogenesis Regulated by Thyroid Hormone, β3-Adrenergic Agonists, and Leptin

Da-Wei Gong; Yufang He; Michael Karas; Marc L. Reitman

Mitochondrial uncoupling proteins (UCPs) are transporters that are important for thermogenesis. The net result of their activity is the exothermic movement of protons through the inner mitochondrial membrane, uncoupled from ATP synthesis. We have cloned a third member of the UCP family, UCP3. UCP3 is expressed at high levels in muscle and rodent brown adipose tissue. Overexpression in yeast reduced the mitochondrial membrane potential, showing that UCP3 is a functional uncoupling protein. UCP3 RNA levels are regulated by hormonal and dietary manipulations. In contrast, levels of UCP2, a widely expressed UCP family member, showed little hormonal regulation. In particular, muscle UCP3 levels were decreased 3-fold in hypothyroid rats and increased 6-fold in hyperthyroid rats. Thus UCP3 is a strong candidate to explain the effects of thyroid hormone on thermogenesis. White adipose UCP3 levels were greatly increased by treatment with the β3-adrenergic agonist, CL214613, suggesting another pathway for increasing thermogenesis. UCP3 mRNA levels were also regulated by dexamethasone, leptin, and starvation, albeit differently in muscle and brown adipose tissue. Starvation caused increased muscle and decreased BAT UCP3, suggesting that muscle assumes a larger role in thermoregulation during starvation. The UCP3 gene is located close to that encoding UCP2, in a chromosomal region implicated in previous linkage studies as contributing to obesity.


Molecular and Cellular Biology | 2000

Growth, Adipose, Brain, and Skin Alterations Resulting from Targeted Disruption of the Mouse Peroxisome Proliferator-Activated Receptor β(δ)

Jeffrey M. Peters; Susanna S. T. Lee; Wen Li; Jerrold M. Ward; Oksana Gavrilova; Marc L. Reitman; Lynn D. Hudson; Frank J. Gonzalez

ABSTRACT To determine the physiological roles of peroxisome proliferator-activated receptor β (PPARβ), null mice were constructed by targeted disruption of the ligand binding domain of the murine PPARβ gene. Homozygous PPARβ-null term fetuses were smaller than controls, and this phenotype persisted postnatally. Gonadal adipose stores were smaller, and constitutive mRNA levels of CD36 were higher, in PPARβ-null mice than in controls. In the brain, myelination of the corpus callosum was altered in PPARβ-null mice. PPARβ was not required for induction of mRNAs involved in epidermal differentiation induced byO-tetradecanoylphorbol-13-acetate (TPA). The hyperplastic response observed in the epidermis after TPA application was significantly greater in the PPARβ-null mice than in controls. Inflammation induced by TPA in the skin was lower in wild-type mice fed sulindac than in similarly treated PPARβ-null mice. These results are the first to provide in vivo evidence of significant roles for PPARβ in development, myelination of the corpus callosum, lipid metabolism, and epidermal cell proliferation.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity

J. T. Tansey; C. Sztalryd; J. Gruia-Gray; D. L. Roush; J. V. Zee; Oksana Gavrilova; Marc L. Reitman; Chuxia Deng; Cuiling Li; Alan R. Kimmel; Constantine Londos

Perilipin coats the lipid droplets of adipocytes and is thought to have a role in regulating triacylglycerol hydrolysis. To study the role of perilipin in vivo, we have created a perilipin knockout mouse. Perilipin null (peri−/−) and wild-type (peri+/+) mice consume equal amounts of food, but the adipose tissue mass in the null animals is reduced to ≈30% of that in wild-type animals. Isolated adipocytes of perilipin null mice exhibit elevated basal lipolysis because of the loss of the protective function of perilipin. They also exhibit dramatically attenuated stimulated lipolytic activity, indicating that perilipin is required for maximal lipolytic activity. Plasma leptin concentrations in null animals were greater than expected for the reduced adipose mass. The peri−/− animals have a greater lean body mass and increased metabolic rate but they also show an increased tendency to develop glucose intolerance and peripheral insulin resistance. When fed a high-fat diet, the perilipin null animals are resistant to diet-induced obesity but not to glucose intolerance. The data reveal a major role for perilipin in adipose lipid metabolism and suggest perilipin as a potential target for attacking problems associated with obesity.


Journal of Clinical Investigation | 2000

Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice

Oksana Gavrilova; Bernice Marcus-Samuels; David Graham; Jason K. Kim; Gerald I. Shulman; Arthur L. Castle; Charles Vinson; Michael Eckhaus; Marc L. Reitman

In lipoatrophic diabetes, a lack of fat is associated with insulin resistance and hyperglycemia. This is in striking contrast to the usual association of diabetes with obesity. To understand the underlying mechanisms, we transplanted adipose tissue into A-ZIP/F-1 mice, which have a severe form of lipoatrophic diabetes. Transplantation of wild-type fat reversed the hyperglycemia, dramatically lowered insulin levels, and improved muscle insulin sensitivity, demonstrating that the diabetes in A-ZIP/F-1 mice is caused by the lack of adipose tissue. All aspects of the A-ZIP/F-1 phenotype including hyperphagia, hepatic steatosis, and somatomegaly were either partially or completely reversed. However, the improvement in triglyceride and FFA levels was modest. Donor fat taken from parametrial and subcutaneous sites was equally effective in reversing the phenotype. The beneficial effects of transplantation were dose dependent and required near-physiological amounts of transplanted fat. Transplantation of genetically modified fat into A-ZIP/F-1 mice is a new and powerful technique for studying adipose physiology and the metabolic and endocrine communication between adipose tissue and the rest of the body.


Journal of Biological Chemistry | 2003

Liver Peroxisome Proliferator-activated Receptor γ Contributes to Hepatic Steatosis, Triglyceride Clearance, and Regulation of Body Fat Mass

Oksana Gavrilova; Martin Haluzik; Kimihiko Matsusue; Jaime J. Cutson; Lisa M. Johnson; Kelly R. Dietz; Christopher J. Nicol; Charles Vinson; Frank J. Gonzalez; Marc L. Reitman

Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that mediates the antidiabetic effects of thiazolidinediones. PPARγ is present in adipose tissue and becomes elevated in fatty livers, but the roles of specific tissues in thiazolidinedione actions are unclear. We studied the function of liver PPARγ in both lipoatrophic A-ZIP/F-1 (AZIP) and wild type mice. In AZIP mice, ablation of liver PPARγ reduced the hepatic steatosis but worsened the hyperlipidemia, triglyceride clearance, and muscle insulin resistance. Inactivation of AZIP liver PPARγ also abolished the hypoglycemic and hypolipidemic effects of rosiglitazone, demonstrating that, in the absence of adipose tissue, the liver is a primary and major site of thiazolidinedione action. In contrast, rosiglitazone remained effective in non-lipoatrophic mice lacking liver PPARγ, suggesting that adipose tissue is the major site of thiazolidinedione action in typical mice with adipose tissue. Interestingly, mice without liver PPARγ, but with adipose tissue, developed relative fat intolerance, increased adiposity, hyperlipidemia, and insulin resistance. Thus, liver PPARγ regulates triglyceride homeostasis, contributing to hepatic steatosis, but protecting other tissues from triglyceride accumulation and insulin resistance.


Journal of Clinical Investigation | 2003

Liver-specific disruption of PPARγ in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes

Kimihiko Matsusue; Martin Haluzik; Gilles Lambert; Sun Hee Yim; Oksana Gavrilova; Jerrold M. Ward; Bryan Brewer; Marc L. Reitman; Frank J. Gonzalez

To elucidate the function of PPARgamma in leptin-deficient mouse (ob/ob) liver, a PPARgamma liver-null mouse on an ob/ob background, ob/ob-PPARgamma(fl/fl)AlbCre(+), was produced using a floxed PPARgamma allele, PPARgamma(fl/fl), and Cre recombinase under control of the albumin promoter (AlbCre). The liver of ob/ob-PPARgamma(fl/fl)AlbCre(+) mice had a deletion of exon 2 and a corresponding loss of full-length PPARgamma mRNA and protein. The PPARgamma-deficient liver in ob/ob mice was smaller and had a dramatically decreased triglyceride (TG) content compared with equivalent mice lacking the AlbCre transgene (ob/ob-PPARgamma(fl/fl)AlbCre(-)). Messenger RNA levels of the hepatic lipogenic genes, fatty acid synthase, acetyl-CoA carboxylase, and stearoyl-CoA desaturase-1, were reduced in ob/ob-PPARgamma(fl/fl)AlbCre(+) mice, and the levels of serum TG and FFA in ob/ob-PPARgamma(fl/fl)AlbCre(+) mice were significantly higher than in the control ob/ob-PPARgamma(fl/fl)AlbCre(-) mice. Rosiglitazone treatment exacerbated the fatty liver in ob/ob-PPARgamma(fl/fl)AlbCre(-) mice compared with livers from nonobese Cre(-) mice; there was no effect of rosiglitazone in ob/ob-PPARgamma(fl/fl)AlbCre(+) mice. The deficiency of hepatic PPARgamma further aggravated the severity of diabetes in ob/ob mice due to decreased insulin sensitivity in muscle and fat. These data indicate that hepatic PPARgamma plays a critical role in the regulation of TG content and in the homeostasis of blood glucose and insulin resistance in steatotic diabetic mice.


Journal of Biological Chemistry | 2000

Lack of Obesity and Normal Response to Fasting and Thyroid Hormone in Mice Lacking Uncoupling Protein-3

Da-Wei Gong; Shadi Monemdjou; Oksana Gavrilova; Lisa R. Leon; Bernice Marcus-Samuels; Chieh J. Chou; Leslie P. Kozak; Cuiling Li; Chuxia Deng; Mary-Ellen Harper; Marc L. Reitman

Uncoupling protein-3 (UCP3) is a mitochondrial protein that can diminish the mitochondrial membrane potential. Levels of muscle Ucp3 mRNA are increased by thyroid hormone and fasting. Ucp3 has been proposed to influence metabolic efficiency and is a candidate obesity gene. We have produced aUcp3 knockout mouse to test these hypotheses. TheUcp3 (−/−) mice had no detectable immunoreactive UCP3 by Western blotting. In mitochondria from the knockout mice, proton leak was greatly reduced in muscle, minimally reduced in brown fat, and not reduced at all in liver. These data suggest that UCP3 accounts for much of the proton leak in skeletal muscle. Despite the lack of UCP3, no consistent phenotypic abnormality was observed. The knockout mice were not obese and had normal serum insulin, triglyceride, and leptin levels, with a tendency toward reduced free fatty acids and glucose. Knockout mice showed a normal circadian rhythm in body temperature and motor activity and had normal body temperature responses to fasting, stress, thyroid hormone, and cold exposure. The base-line metabolic rate and respiratory exchange ratio were the same in knockout and control mice, as were the effects of fasting, a β3-adrenergic agonist (CL316243), and thyroid hormone on these parameters. The phenotype ofUcp1/Ucp3 double knockout mice was indistinguishable fromUcp1 single knockout mice. These data suggest thatUcp3 is not a major determinant of metabolic rate but, rather, has other functions.

Collaboration


Dive into the Marc L. Reitman's collaboration.

Top Co-Authors

Avatar

Oksana Gavrilova

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cuiying Xiao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Charles Vinson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Martin Haluzik

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Stuart Kornfeld

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Gary Felsenfeld

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge