Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc Ladanyi is active.

Publication


Featured researches published by Marc Ladanyi.


Nature Medicine | 2001

Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks.

Javed Khan; Jun S. Wei; Markus Ringnér; Lao H. Saal; Marc Ladanyi; Frank Westermann; Frank Berthold; Manfred Schwab; Cristina R. Antonescu; Carsten Peterson; Paul S. Meltzer

The purpose of this study was to develop a method of classifying cancers to specific diagnostic categories based on their gene expression signatures using artificial neural networks (ANNs). We trained the ANNs using the small, round blue-cell tumors (SRBCTs) as a model. These cancers belong to four distinct diagnostic categories and often present diagnostic dilemmas in clinical practice. The ANNs correctly classified all samples and identified the genes most relevant to the classification. Expression of several of these genes has been reported in SRBCTs, but most have not been associated with these cancers. To test the ability of the trained ANN models to recognize SRBCTs, we analyzed additional blinded samples that were not previously used for the training procedure, and correctly classified them in all cases. This study demonstrates the potential applications of these methods for tumor diagnosis and the identification of candidate targets for therapy.


Nature | 2010

The landscape of somatic copy-number alteration across human cancers

Rameen Beroukhim; Craig H. Mermel; Dale Porter; Guo Wei; Soumya Raychaudhuri; Jerry Donovan; Jordi Barretina; Jesse S. Boehm; Jennifer Dobson; Mitsuyoshi Urashima; Kevin T. Mc Henry; Reid M. Pinchback; Azra H. Ligon; Yoon-Jae Cho; Leila Haery; Heidi Greulich; Michael R. Reich; Wendy Winckler; Michael S. Lawrence; Barbara A. Weir; Kumiko Tanaka; Derek Y. Chiang; Adam J. Bass; Alice Loo; Carter Hoffman; John R. Prensner; Ted Liefeld; Qing Gao; Derek Yecies; Sabina Signoretti

A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-κΒ pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.


Nature | 2008

Somatic mutations affect key pathways in lung adenocarcinoma

Li Ding; Gad Getz; David A. Wheeler; Elaine R. Mardis; Michael D. McLellan; Kristian Cibulskis; Carrie Sougnez; Heidi Greulich; Donna M. Muzny; Margaret Morgan; Lucinda Fulton; Robert S. Fulton; Qunyuan Zhang; Michael C. Wendl; Michael S. Lawrence; David E. Larson; Ken Chen; David J. Dooling; Aniko Sabo; Alicia Hawes; Hua Shen; Shalini N. Jhangiani; Lora Lewis; Otis Hall; Yiming Zhu; Tittu Mathew; Yanru Ren; Jiqiang Yao; Steven E. Scherer; Kerstin Clerc

Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers—including NF1, APC, RB1 and ATM—and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.


Proceedings of the National Academy of Sciences of the United States of America | 2007

MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib

James Bean; Cameron Brennan; Jin-Yuan Shih; Gregory J. Riely; Agnes Viale; Lu Wang; Dhananjay Chitale; Noriko Motoi; Janos Szoke; Stephen Broderick; Marissa Balak; Wen Cheng Chang; Chong-Jen Yu; Adi F. Gazdar; Harvey I. Pass; Valerie W. Rusch; William L. Gerald; Shiu Feng Huang; Pan-Chyr Yang; Vincent A. Miller; Marc Ladanyi; Chih-Hsin Yang; William Pao

In human lung adenocarcinomas harboring EGFR mutations, a second-site point mutation that substitutes methionine for threonine at position 790 (T790M) is associated with approximately half of cases of acquired resistance to the EGFR kinase inhibitors, gefitinib and erlotinib. To identify other potential mechanisms that contribute to disease progression, we used array-based comparative genomic hybridization (aCGH) to compare genomic profiles of EGFR mutant tumors from untreated patients with those from patients with acquired resistance. Among three loci demonstrating recurrent copy number alterations (CNAs) specific to the acquired resistance set, one contained the MET proto-oncogene. Collectively, analysis of tumor samples from multiple independent patient cohorts revealed that MET was amplified in tumors from 9 of 43 (21%) patients with acquired resistance but in only two tumors from 62 untreated patients (3%) (P = 0.007, Fishers Exact test). Among 10 resistant tumors from the nine patients with MET amplification, 4 also harbored the EGFRT790M mutation. We also found that an existing EGFR mutant lung adenocarcinoma cell line, NCI-H820, harbors MET amplification in addition to a drug-sensitive EGFR mutation and the T790M change. Growth inhibition studies demonstrate that these cells are resistant to both erlotinib and an irreversible EGFR inhibitor (CL-387,785) but sensitive to a multikinase inhibitor (XL880) with potent activity against MET. Taken together, these data suggest that MET amplification occurs independently of EGFRT790M mutations and that MET may be a clinically relevant therapeutic target for some patients with acquired resistance to gefitinib or erlotinib.


The New England Journal of Medicine | 1994

Infusions of Donor Leukocytes to Treat Epstein-Barr Virus-Associated Lymphoproliferative Disorders after Allogeneic Bone Marrow Transplantation

Esperanza B. Papadopoulos; Marc Ladanyi; David Emanuel; Stephen Mackinnon; Farid Boulad; Matthew H. Carabasi; Hugo Castro-Malaspina; Barrett H. Childs; Alfred P. Gillio; Trudy N. Small; James W. Young; Nancy A. Kernan; Richard J. O'Reilly

BACKGROUND Lymphoma associated with Epstein-Barr virus (EBV) is a complication of bone marrow transplantation that responds poorly to standard forms of therapy. The lymphoma is usually of donor origin. We hypothesized that treatment with infusions of donor leukocytes, which contain cytotoxic T cells presensitized to EBV, might be an effective treatment. METHODS We studied five patients in whom EBV-associated lymphoproliferative disorders developed after they received a T-cell-depleted allogeneic bone marrow transplant. Biopsy specimens were immunophenotyped, subjected to the polymerase chain reaction to determine the origin of the lymphoma (donor or host) and to detect the presence of EBV, and analyzed by Southern blotting for the presence of the clonal EBV genome and immunoglobulin-gene rearrangement. Patients were treated with infusions of unirradiated donor leukocytes at doses calculated to provide approximately 1.0 x 10(6) CD3+ T cells per kilogram of body weight. RESULTS Histopathological examination of biopsy specimens from all five patients demonstrated monomorphic, malignant lymphomas of B-cell origin. Each of the four specimens that could be evaluated was of donor-cell origin. Evidence of clonality was found in two of the three samples adequate for study. EBV DNA was detected by the polymerase chain reaction in all five samples. In all five patients there were complete pathological or clinical responses. The responses were first documented histologically within 8 to 21 days after infusion. Clinical remissions were achieved within 14 to 30 days after the infusions and were sustained without further therapy in the three surviving patients for 10, 16, and 16 months. CONCLUSIONS In a small number of patients, infusions of unirradiated donor leukocytes were an effective treatment for EBV-associated lymphoproliferative disease that arose after allogeneic bone marrow transplantation.


Nature | 2007

Characterizing the cancer genome in lung adenocarcinoma

Barbara A. Weir; Michele S. Woo; Gad Getz; Sven Perner; Li Ding; Rameen Beroukhim; William M. Lin; Michael A. Province; Aldi T. Kraja; Laura A. Johnson; Kinjal Shah; Mitsuo Sato; Roman K. Thomas; Justine A. Barletta; Ingrid B. Borecki; Stephen Broderick; Andrew C. Chang; Derek Y. Chiang; Lucian R. Chirieac; Jeonghee Cho; Yoshitaka Fujii; Adi F. Gazdar; Thomas J. Giordano; Heidi Greulich; Megan Hanna; Bruce E. Johnson; Mark G. Kris; Alex E. Lash; Ling Lin; Neal I. Lindeman

Somatic alterations in cellular DNA underlie almost all human cancers. The prospect of targeted therapies and the development of high-resolution, genome-wide approaches are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection of tumours (n = 371) using dense single nucleotide polymorphism arrays, we identify a total of 57 significantly recurrent events. We find that 26 of 39 autosomal chromosome arms show consistent large-scale copy-number gain or loss, of which only a handful have been linked to a specific gene. We also identify 31 recurrent focal events, including 24 amplifications and 7 homozygous deletions. Only six of these focal events are currently associated with known mutations in lung carcinomas. The most common event, amplification of chromosome 14q13.3, is found in ∼12% of samples. On the basis of genomic and functional analyses, we identify NKX2-1 (NK2 homeobox 1, also called TITF1), which lies in the minimal 14q13.3 amplification interval and encodes a lineage-specific transcription factor, as a novel candidate proto-oncogene involved in a significant fraction of lung adenocarcinomas. More generally, our results indicate that many of the genes that are involved in lung adenocarcinoma remain to be discovered.


Clinical Cancer Research | 2013

Analysis of Tumor Specimens at the Time of Acquired Resistance to EGFR-TKI Therapy in 155 Patients with EGFR-Mutant Lung Cancers

Helena A. Yu; Maria E. Arcila; Natasha Rekhtman; Camelia S. Sima; Maureen F. Zakowski; William Pao; Mark G. Kris; Vincent A. Miller; Marc Ladanyi; Gregory J. Riely

Purpose: All patients with EGF receptor (EGFR)–mutant lung cancers eventually develop acquired resistance to EGFR tyrosine kinase inhibitors (TKI). Smaller series have identified various mechanisms of resistance, but systematic evaluation of a large number of patients to definitively establish the frequency of various mechanisms has not been conducted. Experimental Design: Patients with lung adenocarcinomas and acquired resistance to erlotinib or gefitinib enrolled onto a prospective biopsy protocol and underwent a rebiopsy after the development of acquired resistance. Histology was reviewed. Samples underwent genotyping for mutations in EGFR, AKT1, BRAF, ERBB2, KRAS, MEK1, NRAS and PIK3CA, and FISH for MET and HER2. Results: Adequate tumor samples for molecular analysis were obtained in 155 patients. Ninety-eight had second-site EGFR T790M mutations [63%; 95% confidence interval (CI), 55%–70%] and four had small cell transformation (3%, 95% CI, 0%–6%). MET amplification was seen in 4 of 75 (5%; 95% CI, 1%–13%). HER2 amplification was seen in 3 of 24 (13%; 95% CI, 3%–32%). We did not detect any acquired mutations in PIK3CA, AKT1, BRAF, ERBB2, KRAS, MEK1, or NRAS (0 of 88, 0%; 95% CI, 0%–4%). Overlap among mechanisms of acquired resistance was seen in 4%. Conclusions: This is the largest series reporting mechanisms of acquired resistance to EGFR-TKI therapy. We identified EGFR T790M as the most common mechanism of acquired resistance, whereas MET amplification, HER2 amplification, and small cell histologic transformation occur less frequently. More comprehensive methods to characterize molecular alterations in this setting are needed to improve our understanding of acquired resistance to EGFR-TKIs. Clin Cancer Res; 19(8); 2240–7. ©2013 AACR.


Journal of Thoracic Oncology | 2013

Molecular Testing Guideline for Selection of Lung Cancer Patients for EGFR and ALK Tyrosine Kinase Inhibitors: Guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology

Neal I. Lindeman; Philip T. Cagle; Mary Beth Beasley; Dhananjay Chitale; Sanja Dacic; Giuseppe Giaccone; Robert B. Jenkins; David J. Kwiatkowski; Juan Sebastian Saldivar; Jeremy A. Squire; Marc Ladanyi

Objective: To establish evidence-based recommendations for the molecular analysis of lung cancers that are that are required to guide EGFR- and ALK-directed therapies, addressing which patients and samples should be tested, and when and how testing should be performed. Participants: Three cochairs without conflicts of interest were selected, one from each of the 3 sponsoring professional societies: College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Writing and advisory panels were constituted from additional experts from these societies. Evidence: Three unbiased literature searches of electronic databases were performed to capture articles published published from January 2004 through February 2012, yielding 1533 articles whose abstracts were screened to identify 521 pertinent articles that were then reviewed in detail for their relevance to the recommendations. Evidence was formally graded for each recommendation. Consensus Process: Initial recommendations were formulated by the cochairs and panel members at a public meeting. Each guideline section was assigned to at least 2 panelists. Drafts were circulated to the writing panel (version 1), advisory panel (version 2), and the public (version 3) before submission (version 4). Conclusions: The 37 guideline items address 14 subjects, including 15 recommendations (evidence grade A/B). The major recommendations are to use testing for EGFR mutations and ALK fusions to guide patient selection for therapy with an epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) inhibitor, respectively, in all patients with advanced-stage adenocarcinoma, regardless of sex, race, smoking history, or other clinical risk factors, and to prioritize EGFR and ALK testing over other molecular predictive tests. As scientific discoveries and clinical practice outpace the completion of randomized clinical trials, evidence-based guidelines developed by expert practitioners are vital for communicating emerging clinical standards. Already, new treatments targeting genetic alterations in other, less common driver oncogenes are being evaluated in lung cancer, and testing for these may be addressed in future versions of these guidelines.


Clinical Cancer Research | 2006

Novel D761Y and Common Secondary T790M Mutations in Epidermal Growth Factor Receptor–Mutant Lung Adenocarcinomas with Acquired Resistance to Kinase Inhibitors

Marissa Balak; Yixuan Gong; Gregory J. Riely; Romel Somwar; Allan R. Li; Maureen F. Zakowski; Anne C. Chiang; Guangli Yang; Ouathek Ouerfelli; Mark G. Kris; Marc Ladanyi; Vincent A. Miller; William Pao

Purpose: In patients whose lung adenocarcinomas harbor epidermal growth factor receptor (EGFR) tyrosine kinase domain mutations, acquired resistance to the tyrosine kinase inhibitors (TKI) gefitinib (Iressa) and erlotinib (Tarceva) has been associated with a second-site EGFR mutation, which leads to substitution of methionine for threonine at position 790 (T790M). We aimed to elucidate the frequency and nature of secondary EGFR mutations in patients with acquired resistance to TKI monotherapy. Experimental Design: Tumor cells from patients with acquired resistance were examined for secondary EGFR kinase domain mutations by molecular analyses. Results: Eight of 16 patients (50% observed rate; 95% confidence interval, 25-75%) had tumor cells with second-site EGFR mutations. Seven mutations were T790M and one was a novel D761Y mutation found in a brain metastasis. When combined with a drug-sensitive L858R mutation, the D761Y mutation modestly reduced the sensitivity of mutant EGFR to TKIs in both surrogate kinase and cell viability assays. In an autopsy case, the T790M mutation was found in multiple visceral metastases but not in a brain lesion. Conclusions: The T790M mutation is common in patients with acquired resistance. The limited spectrum of TKI-resistant mutations in EGFR, which binds to erlotinib in the active conformation, contrasts with a wider range of second-site mutations seen with acquired resistance to imatinib, which binds to ABL and KIT, respectively, in closed conformations. Collectively, our data suggest that the type and nature of kinase inhibitor resistance mutations may be influenced by both anatomic site and mode of binding to the kinase target.


JAMA | 2014

Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs.

Mark G. Kris; Bruce E. Johnson; Lynne D. Berry; David J. Kwiatkowski; A. John Iafrate; Ignacio I. Wistuba; Marileila Varella-Garcia; Wilbur A. Franklin; Samuel L. Aronson; Pei Fang Su; Yu Shyr; D. Ross Camidge; Lecia V. Sequist; Bonnie S. Glisson; Fadlo R. Khuri; Edward B. Garon; William Pao; Charles M. Rudin; Joan H. Schiller; Eric B. Haura; Mark A. Socinski; Keisuke Shirai; Heidi Chen; Giuseppe Giaccone; Marc Ladanyi; Kelly Kugler; John D. Minna; Paul A. Bunn

IMPORTANCE Targeting oncogenic drivers (genomic alterations critical to cancer development and maintenance) has transformed the care of patients with lung adenocarcinomas. The Lung Cancer Mutation Consortium was formed to perform multiplexed assays testing adenocarcinomas of the lung for drivers in 10 genes to enable clinicians to select targeted treatments and enroll patients into clinical trials. OBJECTIVES To determine the frequency of oncogenic drivers in patients with lung adenocarcinomas and to use the data to select treatments targeting the identified driver(s) and measure survival. DESIGN, SETTING, AND PARTICIPANTS From 2009 through 2012, 14 sites in the United States enrolled patients with metastatic lung adenocarcinomas and a performance status of 0 through 2 and tested their tumors for 10 drivers. Information was collected on patients, therapies, and survival. INTERVENTIONS Tumors were tested for 10 oncogenic drivers, and results were used to select matched targeted therapies. MAIN OUTCOMES AND MEASURES Determination of the frequency of oncogenic drivers, the proportion of patients treated with genotype-directed therapy, and survival. RESULTS From 2009 through 2012, tumors from 1007 patients were tested for at least 1 gene and 733 for 10 genes (patients with full genotyping). An oncogenic driver was found in 466 of 733 patients (64%). Among these 733 tumors, 182 tumors (25%) had the KRAS driver; sensitizing EGFR, 122 (17%); ALK rearrangements, 57 (8%); other EGFR, 29 (4%); 2 or more genes, 24 (3%); ERBB2 (formerly HER2), 19 (3%); BRAF, 16 (2%); PIK3CA, 6 (<1%); MET amplification, 5 (<1%); NRAS, 5 (<1%); MEK1, 1 (<1%); AKT1, 0. Results were used to select a targeted therapy or trial in 275 of 1007 patients (28%). The median survival was 3.5 years (interquartile range [IQR], 1.96-7.70) for the 260 patients with an oncogenic driver and genotype-directed therapy compared with 2.4 years (IQR, 0.88-6.20) for the 318 patients with any oncogenic driver(s) who did not receive genotype-directed therapy (propensity score-adjusted hazard ratio, 0.69 [95% CI, 0.53-0.9], P = .006). CONCLUSIONS AND RELEVANCE Actionable drivers were detected in 64% of lung adenocarcinomas. Multiplexed testing aided physicians in selecting therapies. Although individuals with drivers receiving a matched targeted agent lived longer, randomized trials are required to determine if targeting therapy based on oncogenic drivers improves survival. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01014286.

Collaboration


Dive into the Marc Ladanyi's collaboration.

Top Co-Authors

Avatar

Mark G. Kris

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Maria E. Arcila

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gregory J. Riely

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maureen F. Zakowski

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ahmet Zehir

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Cristina R. Antonescu

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

David B. Solit

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Lu Wang

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge