Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc M. Kurtz is active.

Publication


Featured researches published by Marc M. Kurtz.


Gene | 2002

Identification, localization and receptor characterization of novel mammalian substance P-like peptides

Marc M. Kurtz; Ruiping Wang; Michelle K. Clements; Margaret A. Cascieri; Christopher P. Austin; Barry R. Cunningham; Gary G. Chicchi; Qingyun Liu

Hemokinin-1 (HK-1) is a novel substance P (SP)-like peptide that is encoded by the preprotachykinin C (PPT-C) gene recently identified in mouse B cells and shown to be a potentially important regulator of B cell development (Nat. Immunol. 1 (2000) 392). We have now isolated and characterized the human and rat orthologs of PPT-C and examined activities of human and mouse HK-1 on the three tachykinin receptors, neurokinin-1-3 (NK1-3). The rat PPT-C polypeptide is highly homologous to mouse PPT-C and contains the same processing sites to generate predicted HK-1. The human PPT-C polypeptide is also homologous to mouse PPT-C, however, it contains two potential monobasic cleavage sites rather than a single dibasic cleavage site at the amino-terminal end of the predicted HK-1 peptide. Thus, human PPT-C has the potential to generate full length predicted HK-1 as well as a truncated version (HK-1(4-11)). Polymerase chain reaction analysis revealed that both human and mouse PPT-C were expressed in a variety of tissues with strong signals detected in the skin of both species and in the mouse brain. Binding and functional analysis indicated that human and mouse HK-1 peptides were nearly identical to SP in their overall activity profile on the three NK receptors with the most potent affinity for the NK1 receptor. The results indicate that PPT-C encodes another high affinity ligand of the NK1 receptor which may play an important role in mediating some of the physiological roles previously assigned to the NK1 receptor.


Bioorganic & Medicinal Chemistry Letters | 2001

2-Aryl Indole NK1 receptor antagonists: optimisation of indole substitution

Laura Catherine Cooper; Gary G. Chicchi; Kevin Dinnell; Jason Matthew Elliott; Gregory John Hollingworth; Marc M. Kurtz; Karen L Locker; Denise Morrison; Duncan E. Shaw; Kwei-Lan Tsao; Alan P. Watt; Angela R. Williams; Christopher John Swain

The synthesis and biological evaluation of a series of 2-aryl indoles with high affinity for the human neurokinin-1 (hNK1) receptor are reported, concentrating on optimisation of the indole substitution.


Tetrahedron | 1992

The isolation and structure elucidation of zaragozic acid C, a novel potent squalene synthase inhibitor.

Claude Dufresne; Kenneth E. Wilson; Deborah L. Zink; Jack L. Smith; James D. Bergstrom; Marc M. Kurtz; Deborah J. Rew; Mary Nallin; Rosalind G. Jenkins; Ken Bartizal; Charlotte Trainor; Gerald F. Bills; Maria S. Meinz; Leeyuan Huang; Janet C. Onishi; James A. Milligan; Marina Mojena; Fernando Pelaez

Abstract The novel zaragozic acid C ( 1 ) has been isolated as a potent inhibitor of squalene synthase. It was found to be a competitive inhibitor of rat liver squalene synthase with an apparent K i of 45 ± 15 pM, and a broad spectrum antifungal agent against both yeast and filamentous fungi.


Neuropharmacology | 2003

Comparison of the functional blockade of rat substance P (NK1) receptors by GR205171, RP67580, SR140333 and NKP-608

N.M.J. Rupniak; Emma J. Carlson; Sara L. Shepheard; Graham Bentley; Angela R. Williams; Alastair W. Hill; Christopher John Swain; Sander G. Mills; Jerry Di Salvo; Ruth Kilburn; Margaret A. Cascieri; Marc M. Kurtz; Kwei-Lan Tsao; Sandra L. Gould; Gary G. Chicchi

Extensive screening of compound libraries was undertaken to identify compounds with high affinity for the rat NK(1) receptor based on inhibition of [(125)I]-substance P binding. RP67580, SR140333, NKP-608 and GR205171 were selected as compounds of interest, with cloned rat NK(1) receptor binding K(i) values of 0.15-1.9 nM. Despite their high binding affinity, NKP-608 and GR205171 exhibited only a moderate functional antagonism of substance P-induced inositol-1-phosphate accumulation and acidification rate at 1 microM using cloned or native rat NK(1) receptors in vitro. The ability of the compounds to penetrate the CNS was determined by inhibition of NK(1) agonist-induced behaviours in gerbils and rats. GR205171 and NKP-608 potently inhibited GR73632-induced foot drumming in gerbils (ID(50) 0.04 and 0.2 mg/kg i.v., respectively). In contrast, RP67580 and SR140333 were poorly brain penetrant in gerbils (no inhibition at 10 mg/kg i.v.) and were not examined further in vivo. In rats, only high doses of GR205171 (10 or 30 mg/kg s.c.) inhibited NK(1) agonist-induced sniffing and hypertension, whilst NKP-608 (1 or 10 mg/kg i.p.) was without effect. GR205171 (3-30 mg/kg s.c.) caused only partial inhibition of separation-induced vocalisations in rat pups, a response that is known to be NK(1) receptor mediated in other species. These observations demonstrate the shortcomings of currently available NK(1) receptor antagonists for rat psychopharmacology assays.


Science | 2017

Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy

Robert W. Myers; Hong-Ping Guan; Juliann Ehrhart; Aleksandr Petrov; Srinivasa Prahalada; Effie Tozzo; Xiaodong Yang; Marc M. Kurtz; Maria E. Trujillo; Dinko Gonzalez Trotter; Danqing Feng; Shiyao Xu; George J. Eiermann; Marie A. Holahan; Daniel Rubins; Stacey Conarello; Xiaoda Niu; Sandra C. Souza; Corin Miller; Jinqi Liu; Ku Lu; Wen Feng; Ying Li; Ronald E. Painter; James A. Milligan; Huaibing He; Franklin Liu; Aimie M. Ogawa; Douglas Wisniewski; Rory J. Rohm

Hitting a dozen enzymes with one drug The adenosine monophosphate-activated protein kinase (AMPK) controls cellular energy status. AMPK is activated when energy levels fall. This stimulates adenosine triphosphate (ATP)-generating pathways that promote glucose uptake and inhibits ATP-consuming pathways associated with glucose synthesis. In principle, these effects would be beneficial in metabolic diseases, including diabetes. Pharmacological activation of AMPK has been challenging, however, because in mammals, the enzyme exists as 12 distinct complexes. Myers et al. describe an orally available compound (MK-8722) that activates all 12 complexes (see the Perspective by Hardie). In animal models, MK-8722 ameliorated diabetes, but it also caused enlargement of the heart. MK-8722 may be a useful tool compound for laboratory research on AMPK function. Science, this issue p. 507; see also p. 455 In animals, a drug activating all 12 isoforms of the energy regulator AMPK benefits metabolism but may pose heart risks. 5′-Adenosine monophosphate–activated protein kinase (AMPK) is a master regulator of energy homeostasis in eukaryotes. Despite three decades of investigation, the biological roles of AMPK and its potential as a drug target remain incompletely understood, largely because of a lack of optimized pharmacological tools. We developed MK-8722, a potent, direct, allosteric activator of all 12 mammalian AMPK complexes. In rodents and rhesus monkeys, MK-8722–mediated AMPK activation in skeletal muscle induced robust, durable, insulin-independent glucose uptake and glycogen synthesis, with resultant improvements in glycemia and no evidence of hypoglycemia. These effects translated across species, including diabetic rhesus monkeys, but manifested with concomitant cardiac hypertrophy and increased cardiac glycogen without apparent functional sequelae.


Bioorganic & Medicinal Chemistry Letters | 2001

2-Aryl indole NK1 receptor antagonists: optimisation of the 2-Aryl ring and the indole nitrogen substituent

Kevin Dinnell; Gary G. Chicchi; Madhumeeta J Dhar; Jason Matthew Elliott; Gregory John Hollingworth; Marc M. Kurtz; Mark Peter Ridgill; Wayne Rycroft; Kwei-Lan Tsao; Angela R. Williams; Christopher John Swain

Novel 2-aryl indole hNK1 receptor ligands were prepared utilising palladium cross-coupling chemistry of a late intermediate as a key step. Compounds with high hNK1 receptor binding affinity and good brain penetration (e.g., 9d) were synthesised.


Lipids in Health and Disease | 2010

Cholesterol in human atherosclerotic plaque is a marker for underlying disease state and plaque vulnerability

Zhu Chen; Marina Ichetovkin; Marc M. Kurtz; Emanuel Zycband; Douglas W. Kawka; John Woods; Xuanmin He; Andrew S. Plump; Eric Hailman

BackgroundCholesterol deposition in arterial wall drives atherosclerosis. The key goal of this study was to examine the relationship between plaque cholesterol content and patient characteristics that typically associate with disease state and lesion vulnerability. Quantitative assays for free cholesterol, cholesteryl ester, triglyceride, and protein markers in atherosclerotic plaque were established and applied to plaque samples from multiple patients and arterial beds (Carotid and peripheral arteries; 98 lesions in total).ResultsWe observed a lower cholesterol level in restenotic than primary peripheral plaque. We observed a trend toward a higher level in symptomatic than asymptomatic carotid plaque. Peripheral plaque from a group of well-managed diabetic patients displayed a weak trend of more free cholesterol deposition than plaque from non-diabetic patients. Plaque triglyceride content exhibited less difference in the same comparisons. We also measured cholesterol in multiple segments within one carotid plaque sample, and found that cholesterol content positively correlated with markers of plaque vulnerability, and negatively correlated with stability markers.ConclusionsOur results offer important biological validation of cholesterol as a key lipid marker for plaque severity. Results also suggest cholesterol is a more sensitive plaque marker than routine histological staining for neutral lipids.


Bioorganic & Medicinal Chemistry Letters | 1998

Serine derived NK1 antagonists 2: a pharmacophore model for arylsulfonamide binding

Jason Matthew Elliott; Howard B. Broughton; Margaret A. Cascieri; Gary G. Chicchi; Ian Thomas Huscroft; Marc M. Kurtz; Angus Murray Macleod; Sharon Sadowski; Graeme Irvine Stevenson

Modifications to the spirocyclic aryl sulfonamide portion of serine derived NK1 antagonists allow a partial pharmacophore model to be developed.


Bioorganic & Medicinal Chemistry | 2008

Fused bicyclic pyrrolizinones as new scaffolds for human NK1 antagonists.

Gregori J. Morriello; Robert J. DeVita; Sander G. Mills; Jonathan R. Young; Peter Lin; George A. Doss; Gary G. Chicchi; Julie A. DeMartino; Marc M. Kurtz; Kwei-Lan C. Tsao; Emma J. Carlson; Karen Townson; Alan Wheeldon; Susan Boyce; Neil Collinson; N.M.J. Rupniak; Stephen Moore

Previous work on human NK(1) antagonists in which the core of the structure is a substituted pyrrolidine has been disclosed. These compounds showed good binding affinity and functional IP activity, however, many did not exhibit the necessary brain penetration for good in vivo activity. The discovery and preparation of a novel 5,5-fused pyrrolidine core is presented in this paper. This scaffold maintains the excellent binding affinity and functional IP activity of the previously reported compounds, but also exhibits excellent brain penetration as observed in a gerbil foot-tapping assay. The determination of the core structural stereochemistry, which eventually led to the final synthesis of a single active diastereomer, is described.


Journal of Medicinal Chemistry | 2009

Potent, Brain-Penetrant, Hydroisoindoline-Based Human Neurokinin-1 Receptor Antagonists

Jinlong Jiang; Jaime Lynn Bunda; Geoge A. Doss; Gary G. Chicchi; Marc M. Kurtz; Kwei-Lan C. Tsao; Xinchun Tong; Song Zheng; Alana Upthagrove; Koppara Samuel; Richard Tschirret-Guth; Sanjeev Kumar; Alan Wheeldon; Emma J. Carlson; Richard Hargreaves; Donald Burns; Terence G. Hamill; Christine Ryan; Stephen Krause; Wai-si Eng; Robert J. DeVita; Sander G. Mills

3-[(3aR,4R,5S,7aS)-5-{(1R)-1-[3,5-bis(trifluoromethyl)phenyl]ethoxy}-4-(4-fluorophenyl)octahydro-2H-isoindol-2-yl]cyclopent-2-en-1-one (17) is a high affinity, brain-penetrant, hydroisoindoline-based neurokinin-1 (NK(1)) receptor antagonist with a long central duration of action in preclinical species and a minimal drug-drug interaction profile. Positron emission tomography (PET) studies in rhesus showed that this compound provides 90% NK(1) receptor blockade in rhesus brain at a plasma level of 67 nM, which is about 10-fold more potent than aprepitant, an NK(1) antagonist marketed for the prevention of chemotherapy-induced and postoperative nausea and vomiting (CINV and PONV). The synthesis of this enantiomerically pure compound containing five stereocenters includes a Diels-Alder condensation, one chiral separation of the cyclohexanol intermediate, an ether formation using a trichloroacetimidate intermediate, and bis-alkylation to form the cyclic amine.

Researchain Logo
Decentralizing Knowledge