Marc Metian
University of La Rochelle
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marc Metian.
Microbial Ecology | 2013
Vincent E. J. Jassey; Caroline Meyer; Christine Dupuy; Nadine Bernard; Edward A. D. Mitchell; Marie-Laure Toussaint; Marc Metian; Auriel P. Chatelain; Daniel Gilbert
Although microorganisms are the primary drivers of biogeochemical cycles, the structure and functioning of microbial food webs are poorly studied. This is the case in Sphagnum peatlands, where microbial communities play a key role in the global carbon cycle. Here, we explored the structure of the microbial food web from a Sphagnum peatland by analyzing (1) the density and biomass of different microbial functional groups, (2) the natural stable isotope (δ13C and δ15N) signatures of key microbial consumers (testate amoebae), and (3) the digestive vacuole contents of Hyalosphenia papilio, the dominant testate amoeba species in our system. Our results showed that the feeding type of testate amoeba species (bacterivory, algivory, or both) translates into their trophic position as assessed by isotopic signatures. Our study further demonstrates, for H. papilio, the energetic benefits of mixotrophy when the density of its preferential prey is low. Overall, our results show that testate amoebae occupy different trophic levels within the microbial food web, depending on their feeding behavior, the density of their food resources, and their metabolism (i.e., mixotrophy vs. heterotrophy). Combined analyses of predation, community structure, and stable isotopes now allow the structure of microbial food webs to be more completely described, which should lead to improved models of microbial community function.
Environmental Monitoring and Assessment | 2014
Moncef Rjeibi; Marc Metian; Tarek Hajji; Thierry Guyot; Rafika Ben Chaouacha-Chekir; Paco Bustamante
The concentrations of six metals (Ag, Cd, Cu, Hg, Pb, and Zn) were investigated and compared in three tissues (arms, digestive gland, and mantle) of three cephalopod species from the Tunisian waters: the common octopus (Octopus vulgaris), the common cuttlefish (Sepia officinalis), and the European squid (Loligo vulgaris). Whatever the species or the sites, the digestive gland displayed the highest concentrations of Ag, Cd, Cu, Pb, and Zn, highlighting its major role in their bioaccumulation and detoxification. This is also true for Hg but only for the digestive gland of O. vulgaris. Muscle from the arms and the mantle contained thus relatively low trace metal concentrations except for Hg in L. vulgaris and S. officinalis. Geographic comparison of metal concentrations in Tunisian cephalopods from three locations indicates that higher concentrations of Ag, Pb, and Hg were observed in cephalopods from northern and eastern coasts, whereas the highest Cd levels were detected in the southeastern, reflecting different conditions of exposure. Comparing the trace element concentrations between species, Ag, Cd, Cu, Hg, and Zn concentrations were the highest in the digestive gland of octopuses. This may be related to the differences in ecological features and swimming behavior among different cephalopod species. Effects of length and sex on metal levels were also considered, indicating a limited influence of sex on metal concentration.
Journal of Food Science | 2015
Moncef Rjeibi; Marc Metian; Tarek Hajji; Thierry Guyot; Rafika Ben Chaouacha-Chekir; Paco Bustamante
Concentrations of cadmium (Cd), copper (Cu), mercury (Hg), and zinc (Zn) were determined by atomic absorption spectrophotometry in the muscle tissues (arms and mantle) of 3 commercial cephalopods (Loligo vulgaris, Octopus vulgaris, and Sepia officinalis) caught in 3 different Tunisian coastal regions. The highest concentrations found correspond to the essential elements Cu and Zn. Octopuses and cuttlefish showed the highest levels of those elements whereas squid presented with significantly higher values of Hg in both muscular tissues. This may be related to different feeding behavior and detoxification processes among benthic and pelagic cephalopods. Variation of element concentrations between seasons was different between species and seemed to be mostly dependent on the sampling site. From a public health standpoint, average concentrations of Cd, Cu, Hg, and Zn measured in edible tissues of cephalopods from this study did not reveal, in general, any risk for consumers. The estimated target hazard quotients for Cd and Hg for consumers of the selected species were below 1 and within the safety range for human health. Moreover, their consumption could provide in an important contribution to the daily dietary intake of Cu for the Tunisian population, especially regarding the consumption of octopus and cuttlefish muscles.
Marine Ecology Progress Series | 2009
Marc Metian; Paco Bustamante; Laetitia Hédouin; François Oberhänsli; Michel Warnau
Archive | 2008
Marc Metian; Michel Warnau
5th SETAC World Congress | 2008
Marc Metian; Richard P. Cosson; Michel Warnau; Paco Bustamante
5th SETAC World Congress | 2008
Paco Bustamante; Marc Metian; Michel Warnau
5th SETAC World Congress | 2008
Paco Bustamante; Marc Metian; Michel Warnau
SETAC Europe 17th Annual meeting | 2007
Marc Metian; Michel Warnau; Laetitia Hédouin; Paco Bustamante
5th International Conference on Marine Pollution and Ecotoxicology | 2007
Paco Bustamante; Marc Metian; Michel Warnau