Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc P. Raphael is active.

Publication


Featured researches published by Marc P. Raphael.


Analytical Chemistry | 2012

A New Methodology for Quantitative LSPR Biosensing and Imaging

Marc P. Raphael; Joseph A. Christodoulides; Shawn P. Mulvaney; M. M. Miller; James P. Long; Jeff M. Byers

A new quantitative analysis methodology for localized surface plasmon resonance (LSPR) biosensing which determines surface-receptor fractional occupancy, as well as an LSPR imaging technique for the spatiotemporal mapping of binding events, is presented. Electron beam nanolithography was used to fabricate 20 × 20 arrays of gold nanostructures atop glass coverslips. A single biotinylated array was used to measure the association kinetics of neutravidin to the surface by spectroscopically determining the fractional occupancy as a function of time. By regenerating the same array, a reliable comparison of the kinetics could be made between control samples and neutravidin concentrations ranging from 1 μM to 50 nM. CCD-based imagery of the array, taken simultaneously with the spectroscopic measurements, reveals the binding of neutravidin to the surface as manifested by enhanced scattering over the majority of the resonance peak. The temporal resolution of the LSPR imaging technique was 200 ms and the spatial resolution was 8 μm(2).


Biophysical Journal | 2013

Quantitative imaging of protein secretions from single cells in real time.

Marc P. Raphael; Joseph A. Christodoulides; James B. Delehanty; James P. Long; Jeff M. Byers

Protein secretions from individual cells create spatially and temporally varying concentration profiles in the extracellular environment, which guide a wide range of biological processes such as wound healing and angiogenesis. Fluorescent and colorimetric probes for the detection of single cell secretions have time resolutions that range from hours to days, and as a result, little is known about how individual cells may alter their protein secretion rates on the timescale of minutes or seconds. Here, we present a label-free technique based upon nanoplasmonic imaging, which enabled the measurement of individual cell secretions in real time. When applied to the detection of antibody secretions from single hybridoma cells, the enhanced time resolution revealed two modes of secretion: one in which the cell secreted continuously and another in which antibodies were released in concentrated bursts that coincided with minute-long morphological contractions of the cell. From the continuous secretion measurements we determined the local concentration of antibodies at the sensing array closest to the cell and from the bursts we estimated the diffusion constant of the secreted antibodies through the extracellular media. The design also incorporates transmitted light and fluorescence microscopy capabilities for monitoring cellular morphological changes and intracellular fluorescent labels. We anticipate that this technique can be adapted as a general tool for the quantitative study of paracrine signaling in both adherent and nonadherent cell lines.


Nanotechnology | 2010

Magnetic moment degradation of nanowires in biological media: real-time monitoring with SQUID magnetometry

Marc P. Raphael; Joseph A. Christodoulides; Syed Noorullah Qadri; Blake S. Simpkins; Jeff M. Byers

Magnetic nanoparticles are used throughout biology for applications from targeted drug and gene delivery to the labeling of cells. These nanoparticles typically react with the biological medium to which they are introduced, resulting in a diminished magnetic moment. The rate at which their magnetic moment is diminished limits their utility for targeting and can signal the unintended release of surface-functionalized biomolecules. A foreknowledge of the time-dependent degradation of the magnetic moment in a given medium can aid in the selection of the optimal buffering solution and in the prediction of a reasonable experimental time frame. With this goal in mind, we have developed a SQUID magnetometer based methodology for measuring the saturation magnetic moment of nanoparticles in real time while immersed in a biological medium. Measurements on Co and Ni nanowires in a variety of commonly used buffered salines demonstrated that the technique has the dynamic range and sensitivity to detect the rapid reduction in moment due to active corrosion as well as much more subtle changes from the formation of a passivating surface oxide layer. In order to correlate the magnetic moment reductions to these specific chemical processes, samples were additionally characterized using x-ray photoelectron spectroscopy, inductively coupled plasma spectroscopy and scanning electron microscopy. The most reactive buffers studied were found to be phosphate and carbonate based, which caused active corrosion of the Co nanowires but only a comparatively slow passivation of the Ni nanowires by oxidation.


Biosensors and Bioelectronics | 2008

The use of DNA molecular beacons as nanoscale temperature probes for microchip-based biosensors

Marc P. Raphael; Joseph A. Christodoulides; Syed Noorullah Qadri; Syed A. Qadri; M. M. Miller; Lynn K. Kurihara; Jeff M. Byers

Todays biosensors and drug delivery devices are increasingly incorporating lithographically patterned circuitry that is placed within microns of the biological molecules to be detected or released. Elevated temperatures due to Joule heating from the underlying circuitry cannot only reduce device performance, but also alter the biological activity of such molecules (i.e. binding, enzymatic, folding). As a consequence, biochip design and characterization will increasingly require local measurements of the temperature and temperature gradients on the biofunctionalized surface. We have developed a technique to address this challenge based on the use of DNA molecular beacons as a nanoscale temperature probe. The surface of fused-silica chips with lithographically patterned, current-carrying gold rings have been functionalized with a layer of molecular beacons. We utilize the temperature dependence of the molecular beacons to calibrate the temperature at the center of the rings as a function of applied current from 25 to 50 degrees C. The fluorescent images of the rings reveal the extent of heating to the surrounding chip due to the applied current while resolving temperature gradients over length scales of less than 500nm. Finite element analysis and analytic calculations of the distribution of heat in the vicinity of the current-carrying rings agree well with the experimental results. Thus, molecular beacons are shown to be a viable tool for temperature calibration of micron-sized circuitry and the visualization of submicron temperature gradients.


Plasmonics | 2015

Optimizing Nanoplasmonic Biosensor Sensitivity with Orientated Single Domain Antibodies

Marc P. Raphael; Joseph A. Christodoulides; Jeff M. Byers; George P. Anderson; Jinny L. Liu; Kendrick B. Turner; Ellen R. Goldman; James B. Delehanty

Localized surface plasmon resonance (LSPR) spectroscopy and imaging are emerging biosensor technologies which tout label-free biomolecule detection at the nanoscale and ease of integration with standard microscopy setups. The applicability of these techniques can be limited by the restrictions that surface-conjugated ligands must be both sufficiently small and orientated to meet analyte sensitivity requirements. We demonstrate that orientated single domain antibodies (sdAb) can optimize nanoplasmonic sensitivity by comparing three anti-ricin sdAb constructs to biotin-neutravidin, a model system for small and highly orientated ligand studies. LSPR imaging of electrostatically orientated sdAb exhibited a ricin sensitivity equivalent to that of the biotinylated LSPR biosensors for neutravidin. These results, combined with the facts that sdAb are highly stable and readily produced in bacteria and yeast, build a compelling case for the increased utilization of sdAbs in nanoplasmonic applications.


Journal of Visualized Experiments | 2015

A Label-free Technique for the Spatio-temporal Imaging of Single Cell Secretions.

Deepa Raghu; Joseph A. Christodoulides; James B. Delehanty; Jeff M. Byers; Marc P. Raphael

Inter-cellular communication is an integral part of a complex system that helps in maintaining basic cellular activities. As a result, the malfunctioning of such signaling can lead to many disorders. To understand cell-to-cell signaling, it is essential to study the spatial and temporal nature of the secreted molecules from the cell without disturbing the local environment. Various assays have been developed to study protein secretion, however, these methods are typically based on fluorescent probes which disrupt the relevant signaling pathways. To overcome this limitation, a label-free technique is required. In this paper, we describe the fabrication and application of a label-free localized surface plasmon resonance imaging (LSPRi) technology capable of detecting protein secretions from a single cell. The plasmonic nanostructures are lithographically patterned onto a standard glass coverslip and can be excited using visible light on commercially available light microscopes. Only a small fraction of the coverslip is covered by the nanostructures and hence this technique is well suited for combining common techniques such as fluorescence and bright-field imaging. A multidisciplinary approach is used in this protocol which incorporates sensor nanofabrication and subsequent biofunctionalization, binding kinetics characterization of ligand and analyte, the integration of the chip and live cells, and the analysis of the measured signal. As a whole, this technology enables a general label-free approach towards mapping cellular secretions and correlating them with the responses of nearby cells.


Scientific Reports | 2018

Acceleration-induced pressure gradients and cavitation in soft biomaterials

Wonmo Kang; Marc P. Raphael

The transient, dynamic response of soft materials to mechanical impact has become increasingly relevant due to the emergence of numerous biomedical applications, e.g., accurate assessment of blunt injuries to the human body. Despite these important implications, acceleration-induced pressure gradients in soft materials during impact and the corresponding material response, from small deformations to sudden bubble bursts, are not fully understood. Both through experiments and theoretical analyses, we empirically show, using collagen and agarose model systems, that the local pressure in a soft sample is proportional to the square of the sample depth in the impact direction. The critical acceleration that corresponds to bubble bursts increases with increasing gel stiffness. Bubble bursts are also highly sensitive to the initial bubble size, e.g., bubble bursts can occur only when the initial bubble diameter is smaller than a critical size (≈10 μm). Our study gives fundamental insight into the physics of injury mechanisms, from blunt trauma to cavitation-induced brain injury.


PLOS ONE | 2018

Nanoplasmonic pillars engineered for single exosome detection

Deepa Raghu; Joseph A. Christodoulides; Marc Christophersen; Jinny L. Liu; George P. Anderson; Michael Robitaille; Jeff M. Byers; Marc P. Raphael

Exosomes are secreted nanovesicles which incorporate proteins and nucleic acids, thereby enabling multifunctional pathways for intercellular communication. There is an increasing appreciation of the critical role they play in fundamental processes such as development, wound healing and disease progression, yet because of their heterogeneous molecular content and low concentrations in vivo, their detection and characterization remains a challenge. In this work we combine nano- and microfabrication techniques for the creation of nanosensing arrays tailored toward single exosome detection. Elliptically–shaped nanoplasmonic sensors are fabricated to accommodate at most one exosome and individually imaged in real time, enabling the label-free recording of digital responses in a highly multiplexed geometry. This approach results in a three orders of magnitude sensitivity improvement over previously reported real-time, multiplexed platforms. Each nanosensor is elevated atop a quartz nanopillar, minimizing unwanted nonspecific substrate binding contributions. The approach is validated with the detection of exosomes secreted by MCF7 breast adenocarcinoma cells. We demonstrate the increasingly digital and stochastic nature of the response as the number of subsampled nanosensors is reduced from four hundred to one.


Heliyon | 2017

Quantifying time-varying cellular secretions with local linear models

Jeff M. Byers; Joseph A. Christodoulides; James B. Delehanty; Deepa Raghu; Marc P. Raphael

Extracellular protein concentrations and gradients initiate a wide range of cellular responses, such as cell motility, growth, proliferation and death. Understanding inter-cellular communication requires spatio-temporal knowledge of these secreted factors and their causal relationship with cell phenotype. Techniques which can detect cellular secretions in real time are becoming more common but generalizable data analysis methodologies which can quantify concentration from these measurements are still lacking. Here we introduce a probabilistic approach in which local-linear models and the law of mass action are applied to obtain time-varying secreted concentrations from affinity-based biosensor data. We first highlight the general features of this approach using simulated data which contains both static and time-varying concentration profiles. Next we apply the technique to determine concentration of secreted antibodies from 9E10 hybridoma cells as detected using nanoplasmonic biosensors. A broad range of time-dependent concentrations was observed: from steady-state secretions of 230 pM near the cell surface to large transients which reached as high as 56 nM over several minutes and then dissipated.


Heliyon | 2017

Improving biosensing activity to carcinoembryonic antigen with orientated single domain antibodies

Jinny L. Liu; Deepa Raghu; George P. Anderson; Ellen R. Goldman; Joseph A. Christodoulides; Marc P. Raphael

Carcinoembryonic antigen (CEA), also referred as CEACAM5, is integral to the adhesion process during cancer invasion and metastasis and is one of the most widely used tumor markers for assisting the diagnosis of cancer recurrence and cancer metastasis. Antibodies against CEA molecules have been developed for detection and diagnostic applications following tumor removal. Single domain antibodies (sdAbs) against CEA isolated from dromedary and llama exhibited high specificity in binding to tumor cells. However, because these CEA sdAbs were not designed to be orientated when conjugated to surface sensors, there is potential for significant improvements in their activity and limit of detection. Herein we modified the CEA sdAbs with two different C-terminal fusions designed to aid with orientation by way of the tail’s charge and biotin binding. A fusion which incorporated the C-terminus addition of a positively charged tail (B5-GS3K) improved biosensor sensitivity to CEA while also retaining the sub-nanomolar binding affinity and thermal stability of the unmodified sdAb. Using our fabricated surfaces on bare gold chips and a multiplexed surface plasmon resonance imager (SPRi), we quantified the specific binding activities, defined as the percentage of bound epitopes to the total immobilized, of the sdAb fusions and anti-CEA mAb. Our results demonstrate that monovalent B5-GS3K exhibited significantly improved binding activity, approximately 3-fold higher than bivalent mAb.

Collaboration


Dive into the Marc P. Raphael's collaboration.

Top Co-Authors

Avatar

Jeff M. Byers

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Joseph A. Christodoulides

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

James B. Delehanty

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinny L. Liu

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ellen R. Goldman

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

George P. Anderson

Government of the United States of America

View shared research outputs
Top Co-Authors

Avatar

James P. Long

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Syed Noorullah Qadri

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Lynn K. Kurihara

United States Naval Research Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge