Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc Parisien is active.

Publication


Featured researches published by Marc Parisien.


Nature | 2014

N6-methyladenosine-dependent regulation of messenger RNA stability.

Xiao Wang; Zhike Lu; Adrian Gomez; Gary C. Hon; Yanan Yue; Dali Han; Ye Fu; Marc Parisien; Qing Dai; Guifang Jia; Bing Ren; Tao Pan; Chuan He

N6-methyladenosine (m6A) is the most prevalent internal (non-cap) modification present in the messenger RNA of all higher eukaryotes. Although essential to cell viability and development, the exact role of m6A modification remains to be determined. The recent discovery of two m6A demethylases in mammalian cells highlighted the importance of m6A in basic biological functions and disease. Here we show that m6A is selectively recognized by the human YTH domain family 2 (YTHDF2) ‘reader’ protein to regulate mRNA degradation. We identified over 3,000 cellular RNA targets of YTHDF2, most of which are mRNAs, but which also include non-coding RNAs, with a conserved core motif of G(m6A)C. We further establish the role of YTHDF2 in RNA metabolism, showing that binding of YTHDF2 results in the localization of bound mRNA from the translatable pool to mRNA decay sites, such as processing bodies. The carboxy-terminal domain of YTHDF2 selectively binds to m6A-containing mRNA, whereas the amino-terminal domain is responsible for the localization of the YTHDF2–mRNA complex to cellular RNA decay sites. Our results indicate that the dynamic m6A modification is recognized by selectively binding proteins to affect the translation status and lifetime of mRNA.


Nature | 2008

The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data.

Marc Parisien; François Major

The classical RNA secondary structure model considers A·U and G·C Watson–Crick as well as G·U wobble base pairs. Here we substitute it for a new one, in which sets of nucleotide cyclic motifs define RNA structures. This model allows us to unify all base pairing energetic contributions in an effective scoring function to tackle the problem of RNA folding. We show how pipelining two computer algorithms based on nucleotide cyclic motifs, MC-Fold and MC-Sym, reproduces a series of experimentally determined RNA three-dimensional structures from the sequence. This demonstrates how crucial the consideration of all base-pairing interactions is in filling the gap between sequence and structure. We use the pipeline to define rules of precursor microRNA folding in double helices, despite the presence of a number of presumed mismatches and bulges, and to propose a new model of the human immunodeficiency virus-1 -1 frame-shifting element.


Nature | 2015

N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions

Nian Liu; Qing Dai; Guanqun Zheng; Chuan He; Marc Parisien; Tao Pan

RNA-binding proteins control many aspects of cellular biology through binding single-stranded RNA binding motifs (RBMs). However, RBMs can be buried within their local RNA structures, thus inhibiting RNA–protein interactions. N6-methyladenosine (m6A), the most abundant and dynamic internal modification in eukaryotic messenger RNA, can be selectively recognized by the YTHDF2 protein to affect the stability of cytoplasmic mRNAs, but how m6A achieves its wide-ranging physiological role needs further exploration. Here we show in human cells that m6A controls the RNA-structure-dependent accessibility of RBMs to affect RNA–protein interactions for biological regulation; we term this mechanism ‘the m6A-switch’. We found that m6A alters the local structure in mRNA and long non-coding RNA (lncRNA) to facilitate binding of heterogeneous nuclear ribonucleoprotein C (HNRNPC), an abundant nuclear RNA-binding protein responsible for pre-mRNA processing. Combining photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) and anti-m6A immunoprecipitation (MeRIP) approaches enabled us to identify 39,060 m6A-switches among HNRNPC-binding sites; and global m6A reduction decreased HNRNPC binding at 2,798 high-confidence m6A-switches. We determined that these m6A-switch-regulated HNRNPC-binding activities affect the abundance as well as alternative splicing of target mRNAs, demonstrating the regulatory role of m6A-switches on gene expression and RNA maturation. Our results illustrate how RNA-binding proteins gain regulated access to their RBMs through m6A-dependent RNA structural remodelling, and provide a new direction for investigating RNA-modification-coded cellular biology.


The EMBO Journal | 2007

Staufen1 regulates diverse classes of mammalian transcripts

Yoon Ki Kim; Luc Furic; Marc Parisien; François Major; Lynne E. Maquat

It is currently unknown how extensively the double‐stranded RNA‐binding protein Staufen (Stau)1 is utilized by mammalian cells to regulate gene expression. To date, Stau1 binding to the 3′‐untranslated region (3′‐UTR) of ADP ribosylation factor (ARF)1 mRNA has been shown to target ARF1 mRNA for Stau1‐mediated mRNA decay (SMD). ARF1 SMD depends on translation and recruitment of the nonsense‐mediated mRNA decay factor Upf1 to the ARF1 3′‐UTR by Stau1. Here, we demonstrate that Stau1 binds to a complex structure within the ARF1 3′‐UTR. We also use microarrays to show that 1.1 and 1.0% of the 11 569 HeLa‐cell transcripts that were analyzed are upregulated and downregulated, respectively, at least two‐fold upon Stau1 depletion in three independently performed experiments. We localize the Stau1 binding site to the 3′‐UTR of four mRNAs that we define as natural SMD targets. Additionally, we provide evidence that the efficiency of SMD increases during the differentiation of C2C12 myoblasts to myotubes. We propose that Stau1 influences the expression of a wide variety of physiologic transcripts and metabolic pathways.


RNA | 2013

Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA

Nian Liu; Marc Parisien; Qing Dai; Guanqun Zheng; Chuan He; Tao Pan

N(6)-methyladenosine (m(6)A) is the most abundant modification in mammalian mRNA and long noncoding RNA (lncRNA). Recent discoveries of two m(6)A demethylases and cell-type and cell-state-dependent m(6)A patterns indicate that m(6)A modifications are highly dynamic and likely play important biological roles for RNA akin to DNA methylation or histone modification. Proposed functions for m(6)A modification include mRNA splicing, export, stability, and immune tolerance; but m(6)A studies have been hindered by the lack of methods for its identification at single nucleotide resolution. Here, we develop a method that accurately determines m(6)A status at any site in mRNA/lncRNA, termed site-specific cleavage and radioactive-labeling followed by ligation-assisted extraction and thin-layer chromatography (SCARLET). The method determines the precise location of the m(6)A residue and its modification fraction, which are crucial parameters in probing the cellular dynamics of m(6)A modification. We applied the method to determine the m(6)A status at several sites in two human lncRNAs and three human mRNAs and found that m(6)A fraction varies between 6% and 80% among these sites. We also found that many m(6)A candidate sites in these RNAs are however not modified. The precise determination of m(6)A status in a long noncoding RNA also enables the identification of an m(6)A-containing RNA structural motif.


Journal of Biological Chemistry | 2012

Genome-wide Identification and Quantitative Analysis of Cleaved tRNA Fragments Induced by Cellular Stress

Mridusmita Saikia; Dawid Krokowski; Bo Jhih Guan; Pavel Ivanov; Marc Parisien; Guo Fu Hu; Paul Anderson; Tao Pan; Maria Hatzoglou

Background: Regulation of stress-induced tRNA cleavage by angiogenin is not well studied. Results: tRNA fragment accumulation was higher during oxidative than hypertonic stress. Conclusion: tRNA cleavage is regulated by the availability of angiogenin and tRNA substrate, levels of RNH1, and the rates of protein synthesis. Significance: Stress-specific tRNA cleavage mechanisms and patterns will provide insights into novel stress signaling pathways. Certain stress conditions can induce cleavage of tRNAs around the anticodon loop via the use of the ribonuclease angiogenin. The cellular factors that regulate tRNA cleavage are not well known. In this study we used normal and eIF2α phosphorylation-deficient mouse embryonic fibroblasts and applied a microarray-based methodology to identify and compare tRNA cleavage patterns in response to hypertonic stress, oxidative stress (arsenite), and treatment with recombinant angiogenin. In all three scenarios mouse embryonic fibroblasts deficient in eIF2α phosphorylation showed a higher accumulation of tRNA fragments including those derived from initiator-tRNAMet. We have shown that tRNA cleavage is regulated by the availability of angiogenin, its substrate (tRNA), the levels of the angiogenin inhibitor RNH1, and the rates of protein synthesis. These conclusions are supported by the following findings: (i) exogenous treatment with angiogenin or knockdown of RNH1 increased tRNA cleavage; (ii) tRNA fragment accumulation was higher during oxidative stress than hypertonic stress, in agreement with a dramatic decrease of RNH1 levels during oxidative stress; and (iii) a positive correlation was observed between angiogenin-mediated tRNA cleavage and global protein synthesis rates. Identification of the stress-specific tRNA cleavage mechanisms and patterns will provide insights into the role of tRNA fragments in signaling pathways and stress-related disorders.


RNA | 2009

New metrics for comparing and assessing discrepancies between RNA 3D structures and models

Marc Parisien; José Almeida Cruz; Eric Westhof; FRANCxOIS Major

To benchmark progress made in RNA three-dimensional modeling and assess newly developed techniques, reliable and meaningful comparison metrics and associated tools are necessary. Generally, the average root-mean-square deviations (RMSDs) are quoted. However, RMSD can be misleading since errors are spread over the whole molecule and do not account for the specificity of RNA base interactions. Here, we introduce two new metrics that are particularly suitable to RNAs: the deformation index and deformation profile. The deformation index is calibrated by the interaction network fidelity, which considers base-base-stacking and base-base-pairing interactions within the target structure. The deformation profile highlights dissimilarities between structures at the nucleotide scale for both intradomain and interdomain interactions. Our results show that there is little correlation between RMSD and interaction network fidelity. The deformation profile is a tool that allows for rapid assessment of the origins of discrepancies.


Molecular and Cellular Biology | 2014

Angiogenin-Cleaved tRNA Halves Interact with Cytochrome c, Protecting Cells from Apoptosis during Osmotic Stress

Mridusmita Saikia; Raul Jobava; Marc Parisien; Andrea A. Putnam; Dawid Krokowski; Xing Huang Gao; Bo Jhih Guan; Yiyuan Yuan; Eckhard Jankowsky; Zhaoyang Feng; Guo Fu Hu; Marianne Pusztai-Carey; Madhavi Gorla; Naresh Babu V. Sepuri; Tao Pan; Maria Hatzoglou

ABSTRACT Adaptation to changes in extracellular tonicity is essential for cell survival. However, severe or chronic hyperosmotic stress induces apoptosis, which involves cytochrome c (Cyt c) release from mitochondria and subsequent apoptosome formation. Here, we show that angiogenin-induced accumulation of tRNA halves (or tiRNAs) is accompanied by increased survival in hyperosmotically stressed mouse embryonic fibroblasts. Treatment of cells with angiogenin inhibits stress-induced formation of the apoptosome and increases the interaction of small RNAs with released Cyt c in a ribonucleoprotein (Cyt c-RNP) complex. Next-generation sequencing of RNA isolated from the Cyt c-RNP complex reveals that 20 tiRNAs are highly enriched in the Cyt c-RNP complex. Preferred components of this complex are 5′ and 3′ tiRNAs of specific isodecoders within a family of isoacceptors. We also demonstrate that Cyt c binds tiRNAs in vitro, and the pool of Cyt c-interacting RNAs binds tighter than individual tiRNAs. Finally, we show that angiogenin treatment of primary cortical neurons exposed to hyperosmotic stress also decreases apoptosis. Our findings reveal a connection between angiogenin-generated tiRNAs and cell survival in response to hyperosmotic stress and suggest a novel cellular complex involving Cyt c and tiRNAs that inhibits apoptosome formation and activity.


Journal of Physical Chemistry B | 2010

RNA structure determination using SAXS data.

Sichun Yang; Marc Parisien; François Major; Benoı̂t Roux

Exploiting the experimental information from small-angle X-ray solution scattering (SAXS) in conjunction with structure prediction algorithms can be advantageous in the case of ribonucleic acids (RNA), where global restraints on the 3D fold are often lacking. Traditional usage of SAXS data often starts by attempting to reconstruct the molecular shape ab initio, which is subsequently used to assess the quality of a model. Here, an alternative strategy is explored whereby the models from a very large decoy set are directly sorted according to their fit to the SAXS data. For rapid computation of SAXS patterns, the method developed here makes use of a coarse-grained representation of RNA. It also accounts for the explicit treatment of the contribution to the scattering of water molecules and ions surrounding the RNA. The method, called Fast-SAXS-RNA, is first calibrated using a tRNA (tRNA-val) and then tested on the P4-P6 fragment of group I intron (P4-P6). Fast-SAXS-RNA is then used as a filter for decoy models generated by the MC-Fold and MC-Sym pipeline, a suite of RNA 3D all-atom structure algorithms that encode and exploit RNA 3D architectural principles. The ability of Fast-SAXS-RNA to discriminate native folds is tested against three widely used RNA molecules in molecular modeling benchmarks: the tRNA, the P4-P6, and a synthetic hairpin suspected to assemble into a homodimer. For each molecule, a large pool of decoys are generated, scored, and ranked using Fast-SAXS-RNA. The method is able to identify low-rmsd models among top ranking structures, for both tRNA and P4-P6. For the hairpin, the approach correctly identifies the dimeric state as the solution structure over the monomeric state and alternative secondary structures. The method offers a powerful strategy for recognizing native RNA conformations as well as multimeric assemblies and alternative secondary structures, thus enabling high-throughput RNA structure determination using SAXS data.


eLife | 2015

Quantitative H2S-mediated protein sulfhydration reveals metabolic reprogramming during the integrated stress response.

Xing Huang Gao; Dawid Krokowski; Bo Jhih Guan; Ilya R. Bederman; Mithu Majumder; Marc Parisien; Luda Diatchenko; Omer Kabil; Belinda Willard; Ruma Banerjee; Benlian Wang; Gurkan Bebek; Charles R. Evans; Paul L. Fox; Stanton L. Gerson; Charles L. Hoppel; Ming Liu; Peter Arvan; Maria Hatzoglou

The sulfhydration of cysteine residues in proteins is an important mechanism involved in diverse biological processes. We have developed a proteomics approach to quantitatively profile the changes of sulfhydrated cysteines in biological systems. Bioinformatics analysis revealed that sulfhydrated cysteines are part of a wide range of biological functions. In pancreatic β cells exposed to endoplasmic reticulum (ER) stress, elevated H2S promotes the sulfhydration of enzymes in energy metabolism and stimulates glycolytic flux. We propose that transcriptional and translational reprogramming by the integrated stress response (ISR) in pancreatic β cells is coupled to metabolic alternations triggered by sulfhydration of key enzymes in intermediary metabolism. DOI: http://dx.doi.org/10.7554/eLife.10067.001

Collaboration


Dive into the Marc Parisien's collaboration.

Top Co-Authors

Avatar

Tao Pan

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Dai

University of Chicago

View shared research outputs
Top Co-Authors

Avatar

Nian Liu

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Jhih Guan

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Chuan He

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Dawid Krokowski

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Maria Hatzoglou

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge