Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc Parmentier is active.

Publication


Featured researches published by Marc Parmentier.


Cell | 1996

A Dual-Tropic Primary HIV-1 Isolate That Uses Fusin and the β-Chemokine Receptors CKR-5, CKR-3, and CKR-2b as Fusion Cofactors

Benjamin J. Doranz; Joseph Rucker; Yanjie Yi; Michel Samson; Stephen C. Peiper; Marc Parmentier; Ronald G. Collman; Robert W. Doms

Here, we show that the beta-chemokine receptor CKR-5 serves as a cofactor for M-tropic HIV viruses. Expression of CKR-5 with CD4 enables nonpermissive cells to form syncytia with cells expressing M-tropic, but not T-tropic, HIV-1 env proteins. Expression of CKR-5 and CD4 enables entry of a M-tropic, but not a T-tropic, virus strain. A dual-tropic primary HIV-1 isolate (89.6) utilizes both Fusin and CKR-5 as entry cofactors. Cells expressing the 89.6 env protein form syncytia with QT6 cells expressing CD4 and either Fusin or CKR-5. The beta-chemokine receptors CKR-3 and CKR-2b support HIV-1 89.6 env-mediated syncytia formation but do not support fusion by any of the T-tropic or M-tropic strains tested. Our results suggest that the T-tropic viruses characteristic of disease progression may evolve from purely M-tropic viruses prevalent early in virus infection through changes in the env protein that enable the virus to use multiple entry cofactors.


FEBS Letters | 1994

ORL1, a novel member of the opioid receptor family : cloning, functional expression and localization

Catherine Mollereau; Marc Parmentier; Pierre Mailleux; Jean-Luc Butour; Christiane Moisand; Pascale Chalon; Daniel Caput; Gilbert Vassart; Jean-Claude Meunier

Selective PCR amplification of human and mouse genomic DNAs with oligonucleotides encoding highly conserved regions of the δ‐opioid and somatostatin receptors generated a human DNA probe (hOP01, 761 bp) and its murine counterpart (mOP86, 447 bp). hOP01 was used to screen a cDNA library from human brainstem. A clone (named hORL1) was isolated, sequenced and found to encode a protein of 370 amino acids whose primary structure displays the seven putative membrane‐spanning domains of a G protein‐coupled membrane receptor. The hORL1 receptor is most closely related to opioid receptors not only on structural (sequence) but also on functional grounds: hORLl is 49–50% identical to the murine μ‐, δ‐ and κ‐opioid receptors and, in CHO‐K1 cells stably transfected with a pRc/CMV:hORLl construct, ORL1 mediates inhibition of adenylyl cyclase by etorphine, a ‘universal’ (nonselective) opiate agonist. Yet, hORLl appears not to be a typical opioid receptor. Neither is it a somatostatin or σ (N‐allylnormetazocine) receptor. mRNAs hybridizing with synthetic oligonucleotides complementary to mOP86 are present in many regions of the mouse brain and spinal cord, particularly in limbic (amygdala, hippocampus, septum, habenula,⋯) and hypothalamic structures. We conclude that the hORL1 receptor is a new member of the opioid receptor family with a potential role in modulating a number of brain functions, including instinctive behaviours and emotions.


Nature | 1997

Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor.

Catherine Ledent; Jean-Marie Vaugeois; Serge N. Schiffmann; Thierry Pedrazzini; Malika El Yacoubi; Jean-Jacques Vanderhaeghen; Jean Costentin; John K. Heath; Gilbert Vassart; Marc Parmentier

Adenosine is released from metabolically active cells by facilitated diffusion, and is generated extracellularly by degradation of released ATP. It is a potent biological mediator that modulates the activity of numerous cell types, including various neuronal populations, platelets, neutrophils and mast cells, and smooth muscle cells in bronchi and vasculature. Most of these effects help to protect cells and tissues during stress conditions such as ischaemia. Adenosine mediates its effects through four receptor subtypes: the A1, A2a, A2b and A3 receptors. The A2a receptor (A2aR), is abundant in basal ganglia, vasculature and platelets, and stimulates adenylyl cyclase. It is a major target of caffeine, the most widely used psychoactive drug. Here we investigate the role of the A2a receptor by disrupting the gene in mice. We found that A2aR-knockout (A2aR−/−) mice were viable and bred normally. Their exploratory activity was reduced, whereas caffeine, which normally stimulates exploratory behaviour, became a depressant of exploratory activity. Knockout animals scored higher in anxiety tests, and male mice were much more aggressive towards intruders. The response of A2aR−/−mice to acute pain stimuli was slower. Blood pressure and heart rate were increased, as well as platelet aggregation. The specific A2a agonist CGS 21680 lost its biological activity in all systems tested.


Journal of Experimental Medicine | 2003

Specific Recruitment of Antigen-presenting Cells by Chemerin, a Novel Processed Ligand from Human Inflammatory Fluids

Valérie Wittamer; Jean-Denis Franssen; Marisa Vulcano; Jean François Mirjolet; Emmanuel Le Poul; Isabelle Migeotte; Stephane Brezillon; Richard Tyldesley; Cédric Blanpain; Michel Detheux; Alberto Mantovani; Silvano Sozzani; Gilbert Vassart; Marc Parmentier; David Communi

Dendritic cells (DCs) and macrophages are professional antigen-presenting cells (APCs) that play key roles in both innate and adaptive immunity. ChemR23 is an orphan G protein–coupled receptor related to chemokine receptors, which is expressed specifically in these cell types. Here we present the characterization of chemerin, a novel chemoattractant protein, which acts through ChemR23 and is abundant in a diverse set of human inflammatory fluids. Chemerin is secreted as a precursor of low biological activity, which upon proteolytic cleavage of its COOH-terminal domain, is converted into a potent and highly specific agonist of ChemR23, the chemerin receptor. Activation of chemerin receptor results in intracellular calcium release, inhibition of cAMP accumulation, and phosphorylation of p42–p44 MAP kinases, through the Gi class of heterotrimeric G proteins. Chemerin is structurally and evolutionary related to the cathelicidin precursors (antibacterial peptides), cystatins (cysteine protease inhibitors), and kininogens. Chemerin was shown to promote calcium mobilization and chemotaxis of immature DCs and macrophages in a ChemR23-dependent manner. Therefore, chemerin appears as a potent chemoattractant protein of a novel class, which requires proteolytic activation and is specific for APCs.


Pharmacological Reviews | 2009

International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the Formyl Peptide Receptor (FPR) Family

Richard D. Ye; François Boulay; Ji Ming Wang; Claes Dahlgren; Craig Gerard; Marc Parmentier; Charles N. Serhan; Philip M. Murphy

Formyl peptide receptors (FPRs) are a small group of seven-transmembrane domain, G protein-coupled receptors that are expressed mainly by mammalian phagocytic leukocytes and are known to be important in host defense and inflammation. The three human FPRs (FPR1, FPR2/ALX, and FPR3) share significant sequence homology and are encoded by clustered genes. Collectively, these receptors bind an extraordinarily numerous and structurally diverse group of agonistic ligands, including N-formyl and nonformyl peptides of different composition, that chemoattract and activate phagocytes. N-formyl peptides, which are encoded in nature only by bacterial and mitochondrial genes and result from obligatory initiation of bacterial and mitochondrial protein synthesis with N-formylmethionine, is the only ligand class common to all three human receptors. Surprisingly, the endogenous anti-inflammatory peptide annexin 1 and its N-terminal fragments also bind human FPR1 and FPR2/ALX, and the anti-inflammatory eicosanoid lipoxin A4 is an agonist at FPR2/ALX. In comparison, fewer agonists have been identified for FPR3, the third member in this receptor family. Structural and functional studies of the FPRs have produced important information for understanding the general pharmacological principles governing all leukocyte chemoattractant receptors. This article aims to provide an overview of the discovery and pharmacological characterization of FPRs, to introduce an International Union of Basic and Clinical Pharmacology (IUPHAR)-recommended nomenclature, and to discuss unmet challenges, including the mechanisms used by these receptors to bind diverse ligands and mediate different biological functions.


Psychopharmacology | 2002

Involvement of CB1 cannabinoid receptors in emotional behaviour.

Miquel Martin; Catherine Ledent; Marc Parmentier; Rafael Maldonado; Olga Valverde

Abstract.Rationale: Endogenous and exogenous cannabinoids acting through the CB1 cannabinoid receptors are implicated in the control of a variety of behavioural and neuroendocrine functions, including emotional responses, and learning and memory processes. Recently, knockout mice deficient in the CB1 cannabinoid receptor have been generated, and these animals result in an excellent tool to evaluate the neurophysiology of the endogenous cannabinoid system. Objectives: To establish the role of the CB1 cannabinoid receptor in several emotional-related behavioural responses, including aggressiveness, anxiety, depression and learning models, using CB1 knockout mice. Methods: We evaluated the spontaneous responses of CB1 knockout mice and wild-type controls under different behavioural paradigms, including the light/dark box, the chronic unpredictable mild stress, the resident–intruder test and the active avoidance paradigm. Results: Our findings showed that CB1 knockout mice presented an increase in the aggressive response measured in the resident–intruder test and an anxiogenic-like response in the light/dark box. Furthermore, a higher sensitivity to exhibit depressive-like responses in the chronic unpredictable mild stress procedure was observed in CB1 knockout mice, suggesting an increased susceptibility to develop an anhedonic state in these animals. Finally, CB1 knockout mice showed a significant increase in the conditioned responses produced in the active avoidance model, suggesting an improvement of learning and memory processes. Conclusions: Taken together these findings demonstrate that endogenous cannabinoids through the activation of CB1 receptors are implicated in the control of emotional behaviour and participate in the physiological processes of learning and memory.


Journal of Biological Chemistry | 1999

Epitope Mapping of CCR5 Reveals Multiple Conformational States and Distinct but Overlapping Structures Involved in Chemokine and Coreceptor Function

Benhur Lee; M Sharron; Cédric Blanpain; Benjamin J. Doranz; Jalal Vakili; P Setoh; E Berg; Guo-Li Liu; H R Guy; Stewart R. Durell; Marc Parmentier; Chuang-Rung Chang; Ken Price; Monica Tsang; Robert W. Doms

The chemokine receptor CCR5 is the major coreceptor for R5 human immunodeficiency virus type-1 strains. We mapped the epitope specificities of 18 CCR5 monoclonal antibodies (mAbs) to identify domains of CCR5 required for chemokine binding, gp120 binding, and for inducing conformational changes in Env that lead to membrane fusion. We identified mAbs that bound to N-terminal epitopes, extracellular loop 2 (ECL2) epitopes, and multidomain (MD) epitopes composed of more than one single extracellular domain. N-terminal mAbs recognized specific residues that span the first 13 amino acids of CCR5, while nearly all ECL2 mAbs recognized residues Tyr-184 to Phe-189. In addition, all MD epitopes involved ECL2, including at least residues Lys-171 and Glu-172. We found that ECL2-specific mAbs were more efficient than NH2- or MD-antibodies in blocking RANTES or MIP-1β binding. By contrast, N-terminal mAbs blocked gp120-CCR5 binding more effectively than ECL2 mAbs. Surprisingly, ECL2 mAbs were more potent inhibitors of viral infection than N-terminal mAbs. Thus, the ability to block virus infection did not correlate with the ability to block gp120 binding. Together, these results imply that chemokines and Env bind to distinct but overlapping sites in CCR5, and suggest that the N-terminal domain of CCR5 is more important for gp120 binding while the extracellular loops are more important for inducing conformational changes in Env that lead to membrane fusion and virus infection. Measurements of individual antibody affinities coupled with kinetic analysis of equilibrium binding states also suggested that there are multiple conformational states of CCR5. A previously described mAb, 2D7, was unique in its ability to effectively block both chemokine and Env binding as well as coreceptor activity. 2D7 bound to a unique antigenic determinant in the first half of ECL2 and recognized a far greater proportion of cell surface CCR5 molecules than the other mAbs examined. Thus, the epitope recognized by 2D7 may represent a particularly attractive target for CCR5 antagonists.


Journal of Biological Chemistry | 1997

Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase.

Didier Communi; Cédric Govaerts; Marc Parmentier; Jean-Marie Boeynaems

Clones encoding a new human P2Y receptor, provisionally called P2Y11, have been isolated from human placenta complementary DNA and genomic DNA libraries. The 1113-base pair open reading frame is interrupted by one intron. The P2Y11 receptor is characterized by considerably larger second and third extracellular loops than the subtypes described so far. The deduced amino acid sequence exhibits 33% amino acid identity with the P2Y1 receptor, its closest homolog. Northern blot analysis detected human P2Y11 receptor messenger RNA in spleen and HL-60 cells. The level of P2Y11 transcripts was strongly increased in these cells after granulocyte differentiation induced by retinoic acid or dimethyl sulfoxide. The new receptor was stably expressed in 1321N1 astrocytoma and CHO-K1 cells, where it couples to the stimulation of both the phosphoinositide and adenylyl cyclase pathways, a unique feature among the P2Y family. The rank order of agonists potency was: ATP > 2-methylthio-ATP >>> ADP, whereas UTP and UDP were inactive, indicating that it behaves as a selective purinoceptor.


Cell | 1996

Regions in β-Chemokine Receptors CCR5 and CCR2b That Determine HIV-1 Cofactor Specificity

Joseph Rucker; Michel Samson; Benjamin J. Doranz; Frédérick Libert; Joanne F. Berson; Yanjie Yi; Ronald G. Collman; Christopher C. Broder; Gilbert Vassart; Robert W. Doms; Marc Parmentier

Macrophage-tropic (M-tropic) HIV-1 strains use the beta-chemokine receptor CCR5, but not CCR2b, as a cofactor for membrane fusion and infection, while the dual-tropic strain 89.6 uses both. CCR5/2b chimeras and mutants were used to map regions of CCR5 important for cofactor function and specificity. M-tropic strains required either the amino-terminal domain or the first extracellular loop of CCR5. A CCR2b chimera containing the first 20 N-terminal residues of CCR5 supported M-tropic envelope protein fusion. Amino-terminal truncations of CCR5/CCR2b chimeras indicated that residues 2-5 are important for M-tropic viruses, while 89.6 is dependent on residues 6-9. The identification of multiple functionally important regions in CCR5, coupled with differences in how CCR5 is used by M- and dual-tropic viruses, suggests that interactions between HIV-1 and entry cofactors are conformationally complex.


Behavioural Brain Research | 2001

Cannabinoid CB1 receptor knockout mice fail to self-administer morphine but not other drugs of abuse.

Gregorio Cossu; Catherine Ledent; Liana Fattore; Assunta Imperato; Georg Andrees Böhme; Marc Parmentier; Walter Fratta

The rewarding effects of morphine, cocaine, amphetamine and nicotine were evaluated in CB1 receptor knockout mice by means of an intravenous self-administration model. Experiments were carried out on drug-naive animals using a nose-poking response (NPR)-like as operandum. The results of the present study indicate that morphine did not induce intravenous self-administration in mutant CB1 receptor knockout mice, whereas it was significantly self-administered by the corresponding wild type mice. On the contrary, cocaine, amphetamine and nicotine were self-administered to the same extent by both wild type and CB1 receptor knockout mice. These data clearly indicate that the CB1 cannabinoid receptor is essential not only for the expression of cannabinoid reinforcing effects but also for the modulation of morphine rewarding effects. The specificity of such interaction is supported by the finding that contrary to morphine, cocaine, d-amphetamine and nicotine were self-administered by mice at the same extent either in presence or in absence of the CB1 receptor.

Collaboration


Dive into the Marc Parmentier's collaboration.

Top Co-Authors

Avatar

Gilbert Vassart

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Catherine Ledent

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Frédérick Libert

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Jean-Yves Springael

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Michel Detheux

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Cédric Blanpain

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert W. Doms

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Michel Samson

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jean-Marie Boeynaems

Université libre de Bruxelles

View shared research outputs
Researchain Logo
Decentralizing Knowledge