Marc Portail
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marc Portail.
Applied Physics Letters | 2010
Abdelkarim Ouerghi; A. Kahouli; D. Lucot; Marc Portail; L. Travers; J. Gierak; J. Penuelas; P. Jegou; Abhay Shukla; Thierry Chassagne; Marcin Zielinski
Epitaxial graphene films grown on silicon carbide (SiC) substrate by solid state graphitization is of great interest for electronic and optoelectronic applications. In this paper, we explore the properties of epitaxial graphene films on 3C-SiC(111)Si(111) substrate. X-ray photoelectron spectroscopy and scanning tunneling microscopy were extensively used to characterize the quality of the few-layer graphene (FLG) surface. The Raman spectroscopy studies were useful in confirming the graphitic composition and measuring the thickness of the FLG samples.
Applied Physics Letters | 2010
Abdelkarim Ouerghi; Rachid Belkhou; Massimiliano Marangolo; Mathieu G. Silly; S. El Moussaoui; M. Eddrief; L. Largeau; Marc Portail; Fausto Sirotti
Graphene has emerged as a promising nanoelectronic material in electronic devices applications and studying two-dimensional electron gases with relativistic dispersion near Dirac point. Nonetheless, the control of the preparation conditions for homogeneous large-area graphene layers is difficult. Here, we illustrate evidence for high structural and electronic quality epitaxial graphene on 3C-SiC(111). Morphology and electronic structure of the graphene layers have been analyzed with low energy electron microscopy and angle resolved photoemission spectroscopy. Using scanning tunneling microscopy and scanning transmission electron microscopy, we show that graphene exhibits remarkably continuity of step edges suggesting the possibility of growing large scale graphene layer
Journal of Applied Physics | 2009
Marc Portail; Marcin Zielinski; Thierry Chassagne; Samir Chandra Roy; M. Nemoz
We study the impact of the nucleation step on the final crystalline quality of 3C-SiC heteroepitaxial films grown on (111) and (100) oriented silicon substrates by low pressure chemical vapor deposition. The evolution of both the structural and morphological properties of 3C-SiC epilayers in dependence on the only nucleation parameters (propane flow rate and duration of the process) are investigated by means of x-ray diffraction, scanning electron, atomic force, and optical microscopies. At first, we show how the formation of interfacial voids is controlled by the experimental parameters, as previously reported, and we correlate the density of voids with the substrate sealing by using an analytical model developed by V. Cimalla et al. [Mater. Sci. Eng., B 46, 190 (1997)]. We show that the nucleation stage produces a more dense buffer layer in case of (111) substrates. Further, we investigate the impact of the nucleation parameters on the crystalline quality of 3C-SiC epilayers. Within our experimental set...
Applied Physics Letters | 2010
A. Michon; S. Vézian; Abdelkarim Ouerghi; Marcin Zielinski; Thierry Chassagne; Marc Portail
We propose to grow graphene on SiC by a direct carbon feeding through propane flow in a chemical vapor deposition reactor. X-ray photoemission and low energy electron diffraction show that propane allows to grow few-layer graphene (FLG) on 6H-SiC(0001). Surprisingly, FLG grown on (0001) face presents a rotational disorder similar to that observed for FLG obtained by annealing on (000–1) face. Thanks to a reduced growth temperature with respect to the classical SiC annealing method, we have also grown FLG/3C-SiC/Si(111) in a single growth sequence. This opens the way for large-scale production of graphene-based devices on silicon substrate.
Applied Physics Letters | 2010
X. Song; Jean-François Michaud; Frédéric Cayrel; Marcin Zielinski; Marc Portail; Thierry Chassagne; Emmanuel Collard; Daniel Alquier
In this paper, we demonstrate the high electrical activity of extended defects found in 3C–SiC heteroepitaxially grown layer on (100) silicon substrates. Cross-sectional scanning transmission electron microscopy analysis was performed to reveal the defects while scanning spreading resistance microscopy aimed to study their electrical behavior. Using this technique, complete layer resistance cartography was done. The electrical activity of the extended defects in 3C–SiC was clearly evidenced. Furthermore, the defect activity was estimated to be higher than that of heavily nitrogen doped (5×1018 cm−3) 3C–SiC layer.
Nature Communications | 2015
F. Lafont; R. Ribeiro-Palau; D. Kazazis; A. Michon; O. Couturaud; C. Consejo; Thierry Chassagne; Marcin Zielinski; Marc Portail; B. Jouault; F. Schopfer; W. Poirier
Replacing GaAs by graphene to realize more practical quantum Hall resistance standards (QHRS), accurate to within 10−9 in relative value, but operating at lower magnetic fields than 10 T, is an ongoing goal in metrology. To date, the required accuracy has been reported, only few times, in graphene grown on SiC by Si sublimation, under higher magnetic fields. Here, we report on a graphene device grown by chemical vapour deposition on SiC, which demonstrates such accuracies of the Hall resistance from 10 T up to 19 T at 1.4 K. This is explained by a quantum Hall effect with low dissipation, resulting from strongly localized bulk states at the magnetic length scale, over a wide magnetic field range. Our results show that graphene-based QHRS can replace their GaAs counterparts by operating in as-convenient cryomagnetic conditions, but over an extended magnetic field range. They rely on a promising hybrid and scalable growth method and a fabrication process achieving low-electron-density devices.
Journal of Applied Physics | 2013
A. Michon; S. Vézian; E. Roudon; Denis Lefebvre; Marcin Zielinski; Thierry Chassagne; Marc Portail
Graphene growth from a propane flow in a hydrogen environment (propane-hydrogen chemical vapor deposition (CVD)) on SiC differentiates from other growth methods in that it offers the possibility to obtain various graphene structures on the Si-face depending on growth conditions. The different structures include the (6√3 × 6√3)-R30° reconstruction of the graphene/SiC interface, which is commonly observed on the Si-face, but also the rotational disorder which is generally observed on the C-face. In this work, growth mechanisms leading to the formation of the different structures are studied and discussed. For that purpose, we have grown graphene on SiC(0001) (Si-face) using propane-hydrogen CVD at various pressure and temperature and studied these samples extensively by means of low energy electron diffraction and atomic force microscopy. Pressure and temperature conditions leading to the formation of the different structures are identified and plotted in a pressure-temperature diagram. This diagram, togeth...
Applied Physics Letters | 2009
Samir Chandra Roy; Marc Portail; Thierry Chassagne; J.-M. Chauveau; P. Vennéguès; Marcin Zielinski
In this work, transmission electron microscopy is used to investigate the influence of the carbonization conditions on the formation of crystal defects in 3C-SiC layers deposited on (111) silicon. We focus on two kinds of defects; (1) the stacking faults and microtwins lying in the (1¯1¯1) planes, and (2) the double positioning domains. While the density of the stacking faults and microtwins is found independent on the carbonization conditions, the size of the double positioning domains is strongly influenced by the propane flow rate and can be related to the substrate sealing at the early stage of carbonization.
Journal of Applied Physics | 2012
Marcin Zielinski; Jean-François Michaud; S. Jiao; Thierry Chassagne; Anne-Elisabeth Bazin; A. Michon; Marc Portail; Daniel Alquier
A detailed study of the static bending of micro-cantilevers has been performed for structures created from thin 3C-SiC films grown on (100) and (111) oriented silicon substrates. The biaxial stress distribution in the direction of the film normal has been evaluated based on analysis of the deformation profiles of clamped-free 3C-SiC beams of various thicknesses. Surprisingly, the obtained results clearly indicate that for as-grown samples of both studied orientations, the absolute value of the intrinsic stress increases from the interface to the surface of the film. We propose a simple analytical model of a relaxation process that explains in a quantitative way this unexpected phenomenon of stress gradient inversion.
Applied Physics Letters | 2014
A. Michon; Antoine Tiberj; S. Vézian; E. Roudon; D. Lefebvre; Marc Portail; Marcin Zielinski; Thierry Chassagne; Jean Camassel; Y. Cordier
While the integration of graphene on semiconductor surfaces is important to develop new applications, epitaxial graphene has only been integrated on SiC substrates or 3C-SiC/Si templates. In this work, we explore the possibility of growing graphene on AlN/Si(111) templates. Using a chemical vapor deposition process with propane as the carbon source, we have obtained graphitic films (from 2 to 10 graphene layers) on AlN/Si(111) while preserving the morphology of the AlN layer beneath the graphitic film. This study is an important step for the integration of graphene with semiconductors other than SiC.