Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc Pradas is active.

Publication


Featured researches published by Marc Pradas.


Physics of Fluids | 2011

Rigorous coherent-structure theory for falling liquid films: Viscous dispersion effects on bound-state formation and self-organization

Marc Pradas; Dmitri Tseluiko; Serafim Kalliadasis

We examine the interaction of two-dimensional solitary pulses on falling liquid films. We make use of the second-order model derived by Ruyer-Quil and Manneville [Eur. Phys. J. B 6, 277 (1998); Eur. Phys. J. B 15, 357 (2000); Phys. Fluids 14, 170 (2002)] by combining the long-wave approximation with a weighted residual technique. The model includes (second-order) viscous dispersion effects which originate from the streamwise momentum equation and tangential stress balance. These effects play a dispersive role that primarily influences the shape of the capillary ripples in front of the solitary pulses. We show that different physical parameters, such as surface tension and viscosity, play a crucial role in the interaction between solitary pulses giving rise eventually to the formation of bound states consisting of two or more pulses separated by well-defined distances and traveling at the same velocity. By developing a rigorous coherent-structure theory, we are able to theoretically predict the pulse-separ...


Physical Review Letters | 2011

Noise induced state transitions, intermittency and universality in the noisy Kuramoto-Sivashinksy equation

Marc Pradas; Dmitri Tseluiko; Serafim Kalliadasis; Demetrios T. Papageorgiou; Grigorios A. Pavliotis

Consider the effect of pure additive noise on the long-time dynamics of the noisy Kuramoto-Sivashinsky (KS) equation close to the instability onset. When the noise acts only on the first stable mode (highly degenerate), the KS solution undergoes several state transitions, including critical on-off intermittency and stabilized states, as the noise strength increases. Similar results are obtained with the Burgers equation. Such noise-induced transitions are completely characterized through critical exponents, obtaining the same universality class for both equations, and rigorously explained using multiscale techniques.


Physics of Fluids | 2012

Disorder-induced hysteresis and nonlocality of contact line motion in chemically heterogeneous microchannels

Christophe Wylock; Marc Pradas; Benoît Haut; Pierre Colinet; Serafim Kalliadasis

We examine the motion of a liquid-airmeniscus advancing into a microchannel with chemically heterogeneous walls. We consider the case where a constant flow rate is imposed, so that the mean velocity of the interface is kept constant, and study the effects of the disorder properties on the apparent contact angle for each microchannel surface. We focus here on a large diffusivity regime, where any possible advection effect is not taken into account. To this end, we make use of a phase-field model that enables contact line motion by diffusive interfacial fluxes and takes into account the wetting properties of the walls. We show that in a regime of sufficiently low velocities, the contact angle suffers a hysteresis behavior which is enhanced by the disorder strength. We also show that the contact line dynamics at each surface of the microchannel may become largely coupled with each other when different wetting properties are applied at each wall, reflecting that the dynamics of the interface is dominated by nonlocal effects.


arXiv: Mathematical Physics | 2012

Upscaled phase-field models for interfacial dynamics in strongly heterogeneous domains

Markus Schmuck; Marc Pradas; Grigorios A. Pavliotis; Serafim Kalliadasis

We derive a new, effective macroscopic Cahn–Hilliard equation whose homogeneous free energy is represented by fourth-order polynomials, which form the frequently applied double-well potential. This upscaling is done for perforated/strongly heterogeneous domains. To the best knowledge of the authors, this seems to be the first attempt of upscaling the Cahn–Hilliard equation in such domains. The new homogenized equation should have a broad range of applicability owing to the well-known versatility of phase-field models. The additionally introduced feature of systematically and reliably accounting for confined geometries by homogenization allows for new modelling and numerical perspectives in both science and engineering. Our results are applied to wetting dynamics in porous media and to a single channel with strongly heterogeneous walls.


Physical Review Letters | 2013

New stochastic mode reduction strategy for dissipative systems.

Markus Schmuck; Marc Pradas; Serafim Kalliadasis; Grigorios A. Pavliotis

We present a new methodology for studying non-Hamiltonian nonlinear systems based on an information theoretical extension of a renormalization group technique using a modified maximum entropy principle. We obtain a rigorous dimensionally reduced description for such systems. The neglected degrees of freedom by this reduction are replaced by a systematically defined stochastic process under a constraint on the second moment. This then forms the basis of a computationally efficient method. Numerical computations for the generalized Kuramoto-Sivashinsky equation support our method and reveal that the long-time underlying stochastic process of the fast (unresolved) modes obeys a universal distribution that does not depend on the initial conditions and which we rigorously derive by the maximum entropy principle.


European Journal of Applied Mathematics | 2012

Additive noise effects in active nonlinear spatially extended systems

Marc Pradas; Grigorios A. Pavliotis; Serafim Kalliadasis; Demetrios T. Papageorgiou; Dmitri Tseluiko

We examine the effects of pure additive noise on spatially extended systems with quadratic nonlinearities. We develop a general multi-scale theory for such systems and apply it to the Kuramoto–Sivashinsky equation as a case study. We first focus on a regime close to the instability onset (primary bifurcation), where the system can be described by a single dominant mode. We show analytically that the resulting noise in the equation describing the amplitude of the dominant mode largely depends on the nature of the stochastic forcing. For a highly degenerate noise, in the sense that it is acting on the first stable mode only, the amplitude equation is dominated by a pure multiplicative noise, which in turn induces the dominant mode to undergo several critical state transitions and complex phenomena, including intermittency and stabilisation, as the noise strength is increased. The intermittent behaviour is characterised by a power-law probability density and the corresponding critical exponent is calculated rigorously by making use of the first-passage properties of the amplitude equation. On the other hand, when the noise is acting on the whole subspace of stable modes, the multiplicative noise is corrected by an additive-like term, with the eventual loss of any stabilised state. We also show that the stochastic forcing has no effect on the dominant mode dynamics when it is acting on the second stable mode. Finally, in a regime which is relatively far from the instability onset so that there are two unstable modes, we observe numerically that when the noise is acting on the first stable mode, both dominant modes show noise-induced complex phenomena similar to the single-mode case.


Nonlinearity | 2013

Derivation of effective macroscopic Stokes-Cahn-Hilliard equations for periodic immiscible flows in porous media

Markus Schmuck; Marc Pradas; Gregorios A. Pavliotis; Serafim Kalliadasis

Using thermodynamic and variational principles we examine a basic phase field model for a mixture of two incompressible fluids in strongly perforated domains. With the help of the multiple scale method with drift and our recently introduced splitting strategy for Ginzburg–Landau/Cahn–Hilliard-type equations (Schmuck et al 2012 Proc. R. Soc. A 468 3705–24), we rigorously derive an effective macroscopic phase field formulation under the assumption of periodic flow and a sufficiently large Peclet number. As for classical convection–diffusion problems, we obtain systematically diffusion–dispersion relations (including Taylor–Aris-dispersion). Our results also provide a convenient computational framework to macroscopically track interfaces in porous media. In view of the well-known versatility of phase field models, our study proposes a promising model for many engineering and scientific applications such as multiphase flows in porous media, microfluidics, and fuel cells.


Physical Review E | 2015

Data-driven coarse graining in action: Modeling and prediction of complex systems.

Sebastian Krumscheid; Marc Pradas; Grigorios A. Pavliotis; Serafim Kalliadasis

In many physical, technological, social, and economic applications, one is commonly faced with the task of estimating statistical properties, such as mean first passage times of a temporal continuous process, from empirical data (experimental observations). Typically, however, an accurate and reliable estimation of such properties directly from the data alone is not possible as the time series is often too short, or the particular phenomenon of interest is only rarely observed. We propose here a theoretical-computational framework which provides us with a systematic and rational estimation of statistical quantities of a given temporal process, such as waiting times between subsequent bursts of activity in intermittent signals. Our framework is illustrated with applications from real-world data sets, ranging from marine biology to paleoclimatic data.


International Journal of Bifurcation and Chaos | 2015

Nonlinear Forecasting of the Generalized Kuramoto–Sivashinsky Equation

Hiroshi Gotoda; Marc Pradas; Serafim Kalliadasis

The emergence of pattern formation and chaotic dynamics is studied in the one-dimensional (1D) generalized Kuramoto–Sivashinsky (gKS) equation by means of a time-series analysis, in particular, a nonlinear forecasting method which is based on concepts from chaos theory and appropriate statistical methods. We analyze two types of temporal signals, a local one and a global one, finding in both cases that the dynamical state of the gKS solution undergoes a transition from high-dimensional chaos to periodic pulsed oscillations through low-dimensional deterministic chaos while increasing the control parameter of the system. Our results demonstrate that the proposed nonlinear forecasting methodology allows to elucidate the dynamics of the system in terms of its predictability properties.


Physical Review E | 2010

Activity statistics, avalanche kinetics, and velocity correlations in surface growth

Juan M. López; Marc Pradas; A. Hernández-Machado

We investigate the complex spatiotemporal dynamics in avalanche driven surface growth by means of scaling theory. We study local activity statistics, avalanche kinetics, and temporal correlations in the global interface velocity, obtaining different scaling relationships among the involved critical exponents depending on how far from or close to a critical point the system is. Our scaling arguments are very general and connect local and global magnitudes through several scaling relationships. We expect our results to be applicable in a wide range of systems exhibiting interface kinetic roughening driven by avalanches of local activity, either critical or not. As an example we apply the scaling theory to analyze avalanches and roughening of forced-flow imbibition fronts in excellent agreement with phase-field numerical integrations.

Collaboration


Dive into the Marc Pradas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge