Marc Quinternet
University of Lorraine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marc Quinternet.
Nucleic Acids Research | 2014
Benjamin Rothé; Régis Back; Marc Quinternet; Jonathan Bizarro; Marie-Cécile Robert; Magali Blaud; Christophe Romier; Xavier Manival; Bruno Charpentier; Edouard Bertrand; Christiane Branlant
The yeast Snu13p protein and its 15.5K human homolog both bind U4 snRNA and box C/D snoRNAs. They also bind the Rsa1p/NUFIP assembly factor, proposed to scaffold immature snoRNPs and to recruit the Hsp90-R2TP chaperone complex. However, the nature of the Snu13p/15.5K–Rsa1p/NUFIP interaction and its exact role in snoRNP assembly remained to be elucidated. By using biophysical, molecular and imaging approaches, here, we identify residues needed for Snu13p/15.5K–Rsa1p/NUFIP interaction. By NMR structure determination and docking approaches, we built a 3D model of the Snup13p–Rsa1p interface, suggesting that residues R249, R246 and K250 in Rsa1p and E72 and D73 in Snu13p form a network of electrostatic interactions shielded from the solvent by hydrophobic residues from both proteins and that residue W253 of Rsa1p is inserted in a hydrophobic cavity of Snu13p. Individual mutations of residues in yeast demonstrate the functional importance of the predicted interactions for both cell growth and snoRNP formation. Using archaeal box C/D sRNP 3D structures as templates, the association of Snu13p with Rsa1p is predicted to be exclusive of interactions in active snoRNPs. Rsa1p and NUFIP may thus prevent premature activity of pre-snoRNPs, and their removal may be a key step for active snoRNP production.
Nucleic Acids Research | 2014
Benjamin Rothé; Jean-Michel Saliou; Marc Quinternet; Régis Back; Decebal Tiotiu; Clémence Jacquemin; Christine Loegler; Florence Schlotter; Vlad Peña; Kelvin Eckert; Solange Moréra; Alain Van Dorsselaer; Christiane Branlant; Séverine Massenet; Sarah Sanglier-Cianférani; Xavier Manival; Bruno Charpentier
Biogenesis of eukaryotic box C/D small nucleolar ribonucleoprotein particles (C/D snoRNPs) involves conserved trans-acting factors, which are proposed to facilitate the assembly of the core proteins Snu13p/15.5K, Nop58p/NOP58, Nop56p/NOP56 and Nop1p/Fibrillarin on box C/D small nucleolar RNAs (C/D snoRNAs). In yeast, protein Rsa1 acts as a platform, interacting with both the RNA-binding core protein Snu13 and protein Pih1 of the Hsp82–R2TP chaperone complex. In this work, a proteomic approach coupled with functional and structural studies identifies protein Hit1 as a novel Rsa1p-interacting partner involved in C/D snoRNP assembly. Hit1p contributes to in vivo C/D snoRNA stability and pre-RNA maturation kinetics. It associates with U3 snoRNA precursors and influences its 3′-end processing. Remarkably, Hit1p is required to maintain steady-state levels of Rsa1p. This stabilizing activity is likely to be general across eukaryotic species, as the human protein ZNHIT3(TRIP3) showing sequence homology with Hit1p regulates the abundance of NUFIP1, the Rsa1p functional homolog. The nuclear magnetic resonance solution structure of the Rsa1p317–352–Hit1p70–164 complex reveals a novel mode of protein–protein association explaining the strong stability of the Rsa1p–Hit1p complex. Our biochemical data show that C/D snoRNAs and the core protein Nop58 can interact with the purified Snu13p–Rsa1p–Hit1p heterotrimer.
Journal of Pharmaceutical and Biomedical Analysis | 2013
Marc Quinternet; Jean-Philippe Starck; Marc-André Delsuc; Bruno Kieffer
New generations of drugs are using more and more often therapeutic proteins as the active ingredient, prompting the regulation agencies to adapt their analytical methods. Fast and unambiguous information on the secondary, tertiary and quaternary structure of the protein should be provided to assess the quality of these biodrugs. Recent developments of heteronuclear NMR methods, enabling their use on pharmaceutical formulated unlabeled proteins, provide an efficient way to perform such analysis, a feature that is illustrated here using various commercial formulations of insulins.
Chemistry: A European Journal | 2012
Marc Quinternet; Jean-Philippe Starck; Marc-André Delsuc; Bruno Kieffer
Heteronuclear NMR spectroscopy provides a unique way to obtain site-specific information about protein-ligand interactions. Usually, such studies rely on the availability of isotopically labeled proteins, thereby allowing both editing of the spectra and ligand signals to be filtered out. Herein, we report that the use of the methyl SOFAST correlation experiment enables the determination of site-specific equilibrium binding constants by using unlabeled proteins. By using the binding of L- and D-tryptophan to serum albumin as a test case, we determined very accurate dissociation constants for both the high- and low-affinity sites present at the protein surface. The values of site-specific dissociation constants were closer to those obtained by isothermal titration calorimetry than those obtained from ligand-observed methods, such as saturation transfer difference. The possibility of measuring ligand binding to serum albumin at physiological concentrations with unlabeled proteins may open up new perspectives in the field of drug discovery.
Journal of Molecular Biology | 2016
Benoit Bragantini; Decebal Tiotiu; Benjamin Rothé; Jean-Michel Saliou; Hélène Marty; Sarah Cianférani; Bruno Charpentier; Marc Quinternet; Xavier Manival
Zf–HIT family members share the zf–HIT domain (ZHD), which is characterized by a fold in “treble-clef” through interleaved CCCC and CCHC ZnF motifs that both bind a zinc atom. Six proteins containing ZHD are present in human and three in yeast proteome, all belonging to multimodular RNA/protein complexes involved in gene regulation, chromatin remodeling, and snoRNP assembly. An interesting characteristic of the cellular complexes that ensure these functions is the presence of the RuvBL1/2/Rvb1/2 ATPases closely linked with zf–HIT proteins. Human ZNHIT6/BCD1 and its counterpart in yeast Bcd1p were previously characterized as assembly factors of the box C/D snoRNPs. Our data reveal that the ZHD of Bcd1p is necessary but not sufficient for yeast growth and that the motif has no direct RNA-binding capacity but helps Bcd1p maintain the box C/D snoRNAs level in steady state. However, we demonstrated that Bcd1p interacts nonspecifically with RNAs depending on their length. Interestingly, the ZHD of Bcd1p is functionally interchangeable with that of Hit1p, another box C/D snoRNP assembly factor belonging to the zf–HIT family. This prompted us to use NMR to solve the 3D structures of ZHD from yeast Bcd1p and Hit1p to highlight the structural similarity in the zf–HIT family. We identified structural features associated with the requirement of Hit1p and Bcd1p ZHD for cell growth and box C/D snoRNA stability under heat stress. Altogether, our data suggest an important role of ZHD could be to maintain functional folding to the rest of the protein, especially under heat stress conditions.
Biomolecular Nmr Assignments | 2015
Marie-Eve Chagot; Clémence Jacquemin; Christiane Branlant; Bruno Charpentier; Xavier Manival; Marc Quinternet
We report the nearly complete 1H, 15N and 13C resonance assignments of the two tetratricopeptide-repeat domains of the human RPAP3 protein, a co-chaperone of the heat-shock protein family.
Biomolecular Nmr Assignments | 2015
Xavier Manival; Clémence Jacquemin; Bruno Charpentier; Marc Quinternet
We report the nearly complete 1H, 15N and 13C resonance assignment of the complex formed by the C-terminal domains of Pih1 and Tah1 from S. cerevisiae and evidence the folding ability of Tah1 under complex formation.
Structure | 2018
Julien Henri; Marie-Eve Chagot; Maxime Bourguet; Yoann Abel; Guillaume Terral; Chloé Maurizy; Christelle Aigueperse; Florian Georgescauld; Franck Vandermoere; Rénette Saint-Fort; Isabelle Behm-Ansmant; Bruno Charpentier; Bérengère Pradet-Balade; Céline Verheggen; Edouard Bertrand; Philippe Meyer; Sarah Cianférani; Xavier Manival; Marc Quinternet
RPAP3 and PIH1D1 are part of the HSP90 co-chaperone R2TP complex involved in the assembly process of many molecular machines. In this study, we performed a deep structural investigation of the HSP binding abilities of the two TPR domains of RPAP3. We combined 3D NMR, non-denaturing MS, and ITC techniques with Y2H, IP-LUMIER, FRET, and ATPase activity assays and explain the fundamental role played by the second TPR domain of RPAP3 in the specific recruitment of HSP90. We also established the 3D structure of an RPAP3:PIH1D1 sub-complex demonstrating the need for a 34-residue insertion, specific of RPAP3 isoform 1, for the tight binding of PIH1D1. We also confirm the existence of a complex lacking PIH1D1 in human cells (R2T), which shows differential binding to certain clients. These results highlight similarities and differences between the yeast and human R2TP complexes, and document the diversification of this family of co-chaperone complexes in human.
Biomolecular Nmr Assignments | 2018
Benoit Bragantini; Clément Rouillon; Bruno Charpentier; Xavier Manival; Marc Quinternet
We report the nearly complete 1H, 15N and 13C resonance assignment and the solution structure of the external DII domain of the yeast Rvb2 protein, a member of the AAA+ATPase superfamily.
Methods of Molecular Biology | 2015
Christian Köhler; Raphaël Recht; Marc Quinternet; Frédéric De Lamotte; Marc-André Delsuc; Bruno Kieffer
NMR spectroscopy allows measurements of very accurate values of equilibrium dissociation constants using chemical shift perturbation methods, provided that the concentrations of the binding partners are known with high precision and accuracy. The accuracy and precision of these experiments are improved if performed using individual capillary tubes, a method enabling full automation of the measurement. We provide here a protocol to set up and perform these experiments as well as a robust method to measure peptide concentrations using tryptophan as an internal standard.