Marc Roucaute
Agrocampus Ouest
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marc Roucaute.
Environmental Toxicology and Chemistry | 2007
Thierry Caquet; Mark L. Hanson; Marc Roucaute; David W. Graham; Laurent Lagadic
The immediate response and recovery of the macrobenthic communities of nonisolated and isolated freshwater outdoor 9 ml mesocosms following an acute stress caused by the addition of deltamethrin were studied over a 14-month period. To discriminate between internal and external recovery mechanisms, half of the treated ponds were covered by 1-mm mesh lids that restricted aerial recolonization. Both structural (abundance of the different taxonomic groups) and functional (litter breakdown) parameters were monitored. Insects were broadly reduced in numbers by deltamethrin addition. In general, noninsect groups were not affected or increased in abundance in deltamethrin-treated ponds, probably because of relative insensitivity to deltamethrin, reduced predation, and lower competition for food. No major change in litter breakdown rates were seen, probably because of functional redundancy among the macrobenthic community. Chironominae larvae recovered in open, treated mesocosms 62 d after deltamethrin addition and most insect groups recovered 84 d after the treatment date. However, the presence of lids significantly reduced insect recovery rate, suggesting that it largely depends on the immigration of winged forms (i.e., external recovery) from surrounding non- or less affected systems. These results indicate that the recovery time of macrobenthic communities in an affected natural pond would depend on spatial characteristics of the landscape and also the season that exposure occurs. Isolated ecosystems would display posttreatment insect recovery dynamics very different from highly connected ones, evolving toward alternate pseudoequilibrium states, possibly with lower biodiversity but with preserved functionality. Consequences for higher tier risk assessment of pesticides are discussed.
Journal of Applied Ecology | 2014
Laurent Lagadic; Marc Roucaute; Thierry Caquet
Both the increase in human mobility and climate change contribute to the globalization of vector-borne diseases. Some mosquito species are efficient disease vectors in Europe, thus increasing the risk of epidemic (re)emergence.Bacillus thuringiensis var. israelensis (Bti) is considered as the most efficient larvicide to control mosquito populations with negligible environmental impacts. However, repeated field applications of Bti over many years raise the question of possible long-term effects on non-target invertebrates with putative subsequent alterations of food webs. Environmental effects of Bti have mainly been studied in continental freshwater wetlands. Much less is known for brackish water coastal wetlands. We investigated whether repeated treatments with Bti, applied as VectoBac((R)) WG over seven consecutive years, may affect non-target invertebrate communities in wetlands of the French Atlantic coast. Particular attention was devoted to invertebrates potentially used as food sources by shorebirds and wading birds. Invertebrates were sampled in the water and sediment of control and VectoBac((R))-treated saltmarsh pools between 2006 and 2012. Taxa abundance data were used to calculate community descriptors and to analyse the potential structural changes due to VectoBac((R)) using the principal response curve method and similarity analysis. Physicochemical parameters were measured in the same pools so that homogeneity of the environmental conditions between the control and treated areas could be tested. We demonstrated that long-term use of VectoBac((R)) WG in French Atlantic coastal wetlands had no influence on the temporal evolution of the taxonomic structure and taxa abundance of non-target aquatic invertebrate communities, which is highly driven by abiotic factors. In addition, over the long term, the amount of invertebrates that could be used as food resources by birds is maintained in VectoBac((R))-treated areas.Synthesis and applications. Reduced application rate and targeted spraying of VectoBac((R)) WG in mosquito breeding sites minimize potential environmental impacts of Bacillus thuringiensis var. israelensis (Bti). Even so, surveillance of its possible primary side effects is needed, which requires comparable control and treated areas. Indeed, systematic temporal trends and subtle differences in the range of variation of abiotic factors result in discrepancies between control and treated area in terms of invertebrate abundance, which could be wrongly attributed to VectoBac((R)). Management decisions and mitigation measures may therefore benefit from (i) extending surveillance to a time frame that allows for coverage of the immense temporal variation in taxa abundance and diversity and (ii) the inclusion of environmental variables in the monitoring of non-target animal communities potentially exposed to Bti. Reduced application rate and targeted spraying of VectoBac((R)) WG in mosquito breeding sites minimize potential environmental impacts of Bacillus thuringiensis var. israelensis (Bti). Even so, surveillance of its possible primary side effects is needed, which requires comparable control and treated areas. Indeed, systematic temporal trends and subtle differences in the range of variation of abiotic factors result in discrepancies between control and treated area in terms of invertebrate abundance, which could be wrongly attributed to VectoBac((R)). Management decisions and mitigation measures may therefore benefit from (i) extending surveillance to a time frame that allows for coverage of the immense temporal variation in taxa abundance and diversity and (ii) the inclusion of environmental variables in the monitoring of non-target animal communities potentially exposed to Bti.
Ecotoxicology and Environmental Safety | 2011
Thierry Caquet; Marc Roucaute; Pierre Le Goff; Laurent Lagadic
Bacillus thuringiensis var. israelensis (Bti) is commonly used for selective control of larval populations of mosquitoes in coastal wetlands. A two year-study was implemented to investigate whether repeated treatments with Bti applied either as a liquid (VectoBac® 12AS) or a water-dispersible granule (VectoBac® WG) formulation may affect the abundance and diversity of non-target aquatic invertebrates in saltmarsh pools. Taxonomic composition of the invertebrate communities was typical of brackishwater intermittent ecosystems, with a dominance of annelids, crustaceans and nematocerans. Conditions were contrasted between the two years of the survey, both in terms of annual cumulative rainfall and rainfall distribution throughout the year. As a consequence, the hydroperiod and some other environmental characteristics associated with pool drying played a major role in the dynamics of the invertebrate community. In summer 2006, pool drying reduced the abundance of the polychaete worm Nereis diversicolor, of the amphipod crustacean Corophium volutator and of chironomid larvae. These taxa were able to recolonize rapidly the pools after flooding in September 2006. In 2007, rainfall was more regularly distributed across the year, and the pools did not get dry. Hydrozoans, Chironomini and Orthocladiinae larvae, and oligochaetes were more abundant in treated than in control pools, especially in VectoBac® WG-treated pools. No adverse effects of the treatments were shown on the abundance of N. diversicolor, C. volutator and midge larvae, suggesting that the availability of these food sources for birds was not negatively affected by Bti applications. It is concluded that, as currently performed in Western France coastal wetlands, land-based treatments of saltmarsh pools for larval mosquito control with Bti, used either as VectoBac® 12AS or VectoBac® WG, did not adversely impact non-target aquatic invertebrate communities.
Ecotoxicology | 2011
Arnaud Auber; Marc Roucaute; Anne Togola; Thierry Caquet
The impacts of current and alternative wheat crop protection programs were compared in outdoor pond mesocosms in a 10-month long study. Realistic exposure scenarios were built based upon the results of modelling of drift, drainage and runoff of pesticides successively applied under two environmental situations characteristics of drained soils of northern France. Each situation was associated to two crop protection programs (“Conventional” and “Low-input”) differing in the nature of pesticides used, number of treatments and application rate. Both programs induced significant direct negative effects on various invertebrate groups. Bifenthrin and cyprodynil were identified as the main responsible for these effects in conventional and low-input program, respectively. Indirect effects were also demonstrated especially following treatments with cyprodynil. Litter breakdown was significantly reduced in all treated mesocosms as the functional consequence of the decrease in the abundance of shredders (asellids, Gammarus pulex) illustrating the link between structural and functional effects of pesticides on macroinvertebrate communities. Recovery was observed for many taxa before the end of the study but not for the most sensitive non mobile taxa such as G. pulex. No influence of the agropedoclimatic situation on the effects was shown, suggesting than the main impacts were associated to inputs from drift. The results confirm that the proposed low-input program was less hazardous than the conventional program but the observed structural and functional impact of the low-input program suggest that further improvement of alternative crop protection programs is still needed.
Ecotoxicology | 2015
Eduard Szöcs; Paul J. Van den Brink; Laurent Lagadic; Thierry Caquet; Marc Roucaute; Arnaud Auber; Yannick Bayona; Matthias Liess; Peter Ebke; Alessio Ippolito; Cajo J. F. ter Braak; T.C.M. Brock; Ralf B. Schäfer
Mesocosm experiments that study the ecological impact of chemicals are often analysed using the multivariate method ‘Principal Response Curves’ (PRCs). Recently, the extension of generalised linear models (GLMs) to multivariate data was introduced as a tool to analyse community data in ecology. Moreover, data aggregation techniques that can be analysed with univariate statistics have been proposed. The aim of this study was to compare their performance. We compiled macroinvertebrate abundance datasets of mesocosm experiments designed for studying the effect of various organic chemicals, mainly pesticides, and re-analysed them. GLMs for multivariate data and selected aggregated endpoints were compared to PRCs regarding their performance and potential to identify affected taxa. In addition, we analysed the inter-replicate variability encountered in the studies. Mesocosm experiments characterised by a higher taxa richness of the community and/or lower taxonomic resolution showed a greater inter-replicate variability, whereas variability decreased the more zero counts were encountered in the samples. GLMs for multivariate data performed equally well as PRCs regarding the community response. However, compared to first axis PRCs, GLMs provided a better indication of individual taxa responding to treatments, as separate models are fitted to each taxon. Data aggregation methods performed considerably poorer compared to PRCs. Multivariate community data, which are generated during mesocosm experiments, should be analysed using multivariate methods to reveal treatment-related community-level responses. GLMs for multivariate data are an alternative to the widely used PRCs.
Science of The Total Environment | 2016
Laurent Lagadic; Ralf B. Schäfer; Marc Roucaute; Eduard Szöcs; Sébastien Chouin; Jérôme de Maupeou; Claire Duchet; Evelyne Franquet; Benoit Le Hunsec; Céline Bertrand; Stéphanie Fayolle; Benoît Francés; Yves Rozier; Rémi Foussadier; Jean-Baptiste Santoni; Christophe Lagneau
The environmental safety of Bacillus thuringiensis subsp. israelensis (Bti) is still controversial, mainly because most of the previous field studies on its undesired effects were spatially limited and did not address the relationship between community similarity and application time and frequency. No general statement can therefore be drawn on the usage conditions of Bti that insure protection of non-target organisms. The present study was conducted in eight sites distributed over the main geographical sectors where mosquito control is implemented in mainland France and Corsica. Changes in non-target aquatic invertebrates were followed at elapsed time after repeated applications of two Bti formulations (VectoBac® WDG or 12AS) up to four consecutive years. We examined the influence of both larvicide treatments and environmental variables on community dynamics and dissimilarity between treated and control areas. As it can be argued that chironomids are the most vulnerable group of non-target invertebrates, we scrutinised potential Bti-related effects on the dynamics of their community. The use of VectoBac® WDG and 12AS in coastal and continental wetlands had no immediate or long-term detectable effect on the taxonomic structure and taxa abundance of non-target aquatic invertebrate communities, including chironomids. This applied to the main habitats where mosquito larvae occur, regardless of their geographic location. Flooding, whose frequency and duration depend on local meteorological and hydrological conditions, was identified as the main environmental driver of invertebrate community dynamics. Our findings add support to the environmental safety of currently available Bti formulations when following recommended application rates and best mosquito control practices.
Science of The Total Environment | 2014
Yannick Bayona; Marc Roucaute; Kevin Cailleaud; Laurent Lagadic; Anne Bassères; Thierry Caquet
Descriptors of trophic niche and of food web structure and function have been suggested as integrative and sensitive endpoints of toxicant effects. In the present study, carbon and nitrogen stable isotope signatures were used to assess the effects of the dithiocarbamate fungicide thiram (35 and 170μg/L nominal concentrations) and of a petroleum distillate (0.01, 0.4, 2 and 20mg/L nominal loadings as Hydrocarbon Emulsion or Hydrocarbon Water Accommodated Fraction) on the trophic niche of two freshwater gastropods in artificial streams (Radix peregra) and ponds (Lymnaea stagnalis). Results were analyzed using classical univariate statistical methods and recently proposed uni- and multivariate metrics of the realized trophic niche of species. The trophic niche metrics were highly sensitive to both types of chemicals, but exposure resulted in different response patterns according to the nature of the tested compound. Thiram clearly affected gastropod trophic niche leading to a change in the food resources used and resulting in trophic niche expansion (i.e., increase of diversity of used resources, especially dead animals) or trophic niche contraction (i.e., decrease of diversity of used resources) across time. Both gastropod taxa exposed to hydrocarbons showed a clear trophic niche expansion. Trophic niche metrics therefore provide a promising way of investigating non-lethal effects of exposure to organic chemicals on aquatic invertebrates, and subsequent disturbances in food webs.
Environmental Toxicology and Chemistry | 2014
Yannick Bayona; Ana Roucaute; Marc Roucaute; Caroline Gorzerino; Kevin Cailleaud; Laurent Lagadic; Anne Bassères; Thierry Caquet
Ecological risk assessment of chemicals in mesocosms requires measurement of a large number of parameters at the community level. Studies on invertebrate communities usually focus on taxonomic approaches, which only provide insights into taxonomic structure changes induced by chemicals. In the present study, abundance, biomass (B), theoretical production (P), and instantaneous P/B ratio were used as endpoints to assess the effects of the commercial form of the dithiocarbamate fungicide thiram (35 µg/L and 170 µg/L nominal concentrations) and of the hydrocarbon water accommodated fraction (HWAF) of a petroleum distillate (0.01 mg/L, 0.4 mg/L, 2 mg/L, and 20 mg/L loadings) on the zooplankton community in freshwater pond mesocosms. Endpoints were measured during a 4-wk treatment period (1 pulse/wk) followed by a 5-mo posttreatment period to evaluate zooplankton population recovery. The chlorophyll a concentration in water was significantly increased after treatment with HWAF, whereas it was not affected by thiram treatment. Zooplankton abundance-based analysis showed effects on a limited number of taxa, whereas other endpoints (mainly the P/B ratio) revealed that more taxa were impacted, with recovery depending on the chemical and concentration. Exposure to HWAF mainly had a negative impact on cladocerans, which resulted in top-down effects (between cladocerans and phytoplankton). Thiram negatively affected rotifers and copepods, suggesting more direct toxic effects. The results show that the use of secondary production as an endpoint provides a more comprehensive assessment of potential direct and indirect effects of chemicals on a community, and they also support evidence of alteration in functional processes.
Environmental Pollution | 2014
Yannick Bayona; Marc Roucaute; Kevin Cailleaud; Laurent Lagadic; Anne Bassères; Thierry Caquet
Ecotoxicology | 2015
Yannick Bayona; Marc Roucaute; Kevin Cailleaud; Laurent Lagadic; Anne Bassères; Thierry Caquet