Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc S. Levin is active.

Publication


Featured researches published by Marc S. Levin.


Frontiers in Immunology | 2012

Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer

Deborah C. Rubin; Anisa Shaker; Marc S. Levin

The inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), are chronic inflammatory disorders of the intestine. The prevalence in the United States is greater than 200 cases per 100,000, with the total number of IBD patients between 1 and 1.5 million. CD may affect all parts of the gastrointestinal tract, from mouth to anus, but most commonly involves the distal part of the small intestine or ileum, and colon. UC results in colonic inflammation that can affect the rectum only, or can progress proximally to involve part of or the entire colon. Clinical symptoms include diarrhea, abdominal pain, gastrointestinal bleeding, and weight loss. A serious long-term complication of chronic inflammation is the development of colorectal cancer. A genetic basis for IBD had long been recognized based on the increased familial risk. However, significant discordance for CD in twins, and a much less robust phenotypic concordance for UC, suggested additional factors play a role in disease pathogenesis, including environmental factors. In the past several years, progress in understanding the molecular basis of IBD has accelerated, beginning with the generation of animal models of colitis and progressing to the identification of specific genetic markers from candidate gene, gene linkage, and genome-wide association analyses. Genetic studies have also resulted in the recognition of the importance of environmental factors, particularly the crucial role of the gut microbiota in CD and UC. Altered immune responses to the normal intestinal flora are key factors in IBD pathogenesis. In this research topic, the genetic basis of IBD, the genetic and cellular alterations associated with colitis-associated colon cancer, and the emerging role of the intestinal microbiota and other environmental factors will be reviewed.


Journal of Clinical Investigation | 2006

Epimorphin–/– mice have increased intestinal growth, decreased susceptibility to dextran sodium sulfate colitis, and impaired spermatogenesis

Yuan Wang; Lihua Wang; Hristo Iordanov; Elzbieta A. Swietlicki; Qun Zheng; Shujun Jiang; Yuzhu Tang; Marc S. Levin; Deborah C. Rubin

Dynamic and reciprocal epithelial-mesenchymal interactions are critical for the normal morphogenesis and maintenance of epithelia. Epimorphin has been identified as a unique molecule expressed by mesenchymal cells and myofibroblasts and has putative morphogenetic effects in multiple epithelial tissues, including intestine, skin, mammary gland, lung, gallbladder, and liver. To define the in vivo role of epimorphin, we created epimorphin-null mice by targeted inactivation of the epimorphin gene. Male epimorphin-/- mice are sterile due to abnormal testicular development and impaired spermatogenesis. Intestinal growth is increased in epimorphin-/- mice due to augmented crypt cell proliferation and crypt fission during the neonatal (suckling) period, mediated at least in part by changes in bone morphogenetic protein (Bmp) and Wnt/beta-catenin signaling pathways. Colonic mucosal injury and colitis induced by dextran sodium sulfate (DSS) are ameliorated in epimorphin-/- mice, probably due to the increased proliferative capacity of the epimorphin-/- colon. These in vivo findings support the notion that epimorphin is a key stromal regulator of epithelial cell proliferation and growth in the intestine. In addition, our studies demonstrate a novel and critical role for epimorphin in regulating testicular development and growth as well as spermatogenesis.


Journal of Clinical Investigation | 2010

Epimorphin deletion protects mice from inflammation-induced colon carcinogenesis and alters stem cell niche myofibroblast secretion

Anisa Shaker; Elzbieta A. Swietlicki; Lihua Wang; Shujun Jiang; Birce Onal; Shashi Bala; Katherine Deschryver; Rodney D. Newberry; Marc S. Levin; Deborah C. Rubin

Epithelial-mesenchymal interactions regulate normal gut epithelial homeostasis and have a putative role in inflammatory bowel disease and colon cancer pathogenesis. Epimorphin is a mesenchymal and myofibroblast protein with antiproliferative, promorphogenic effects in intestinal epithelium. We previously showed that deletion of epimorphin partially protects mice from acute colitis, associated with an increase in crypt cell proliferation. Here we explored the potential therapeutic utility of modulating epimorphin expression by examining the effects of epimorphin deletion on chronic inflammation-associated colon carcinogenesis using the azoxymethane/dextran sodium sulfate (AOM/DSS) model. We found that mice in which epimorphin expression was absent had a marked reduction in incidence and extent of colonic dysplasia. Furthermore, epimorphin deletion in myofibroblasts altered the morphology and growth of cocultured epithelial cells. Loss of epimorphin affected secretion of soluble mesenchymal regulators of the stem cell niche such as Chordin. Importantly, IL-6 secretion from LPS-treated epimorphin-deficient myofibroblasts was completely inhibited, and stromal IL-6 expression was reduced in vivo. Taken together, these data show that epimorphin deletion inhibits chronic inflammation-associated colon carcinogenesis in mice, likely as a result of increased epithelial repair, decreased myofibroblast IL-6 secretion, and diminished IL-6-induced inflammation. Furthermore, we believe that modulation of epimorphin expression may have therapeutic benefits in appropriate clinical settings.


American Journal of Physiology-gastrointestinal and Liver Physiology | 1998

Characterization of rat epimorphin/syntaxin 2 expression suggests a role in crypt-villus morphogenesis

Alka Goyal; Renu Singh; Elzbieta A. Swietlicki; Marc S. Levin; Deborah C. Rubin

The rodent intestinal mucosa undergoes a remarkable morphogenesis as the crypt-villus axis is formed. Endoderm-mesenchymal interactions play a critical role in this process. Epimorphin is a mesenchymal protein postulated to play a role in lung and skin morphogenesis. The rat homologue, syntaxin 2, belongs to a family of integral membrane proteins that function in vesicle docking and fusion. To clarify its role in fetal gut morphogenesis, epimorphin expression was examined during ontogeny, in an isograft model of ischemic injury and mucosal repair, and during intestinal adaptation after small bowel resection. Epimorphin/syntaxin 2 mRNA levels were increased in fetal gut during lumen formation and villus morphogenesis. mRNA levels remained elevated in the first 2 wk after birth and then declined at weaning. In situ hybridization showed epimorphin/syntaxin 2 mRNA in gestational day 14 (G14) and G15 intestinal mesenchymal cells and in the mucosal lamina propria during villus formation. Epimorphin/syntaxin 2 mRNA expression increased during villus repair in the isograft. In contrast, in the early stages of intestinal adaptation after small bowel resection, epimorphin/syntaxin 2 mRNA expression was suppressed in the adapting gut. We conclude the cell-specific and temporal patterns of epimorphin expression in the models used in this study suggest a role in the morphogenesis of the crypt-villus axis.The rodent intestinal mucosa undergoes a remarkable morphogenesis as the crypt-villus axis is formed. Endoderm-mesenchymal interactions play a critical role in this process. Epimorphin is a mesenchymal protein postulated to play a role in lung and skin morphogenesis. The rat homologue, syntaxin 2, belongs to a family of integral membrane proteins that function in vesicle docking and fusion. To clarify its role in fetal gut morphogenesis, epimorphin expression was examined during ontogeny, in an isograft model of ischemic injury and mucosal repair, and during intestinal adaptation after small bowel resection. Epimorphin/syntaxin 2 mRNA levels were increased in fetal gut during lumen formation and villus morphogenesis. mRNA levels remained elevated in the first 2 wk after birth and then declined at weaning. In situ hybridization showed epimorphin/syntaxin 2 mRNA in gestational day 14( G14) and G15 intestinal mesenchymal cells and in the mucosal lamina propria during villus formation. Epimorphin/syntaxin 2 mRNA expression increased during villus repair in the isograft. In contrast, in the early stages of intestinal adaptation after small bowel resection, epimorphin/syntaxin 2 mRNA expression was suppressed in the adapting gut. We conclude the cell-specific and temporal patterns of epimorphin expression in the models used in this study suggest a role in the morphogenesis of the crypt-villus axis.


Biochimica et Biophysica Acta | 1989

Developmental changes in the expression of genes involved in cholesterol biosynthesis and lipid transport in human and rat fetal and neonatal livers

Marc S. Levin; Pitt A; Alan L. Schwartz; Peter A. Edwards; Jeffrey I. Gordon

Cloned cDNAs encoding a number of enzymes involved in cholesterol biosynthesis as well as extracellular and intracellular lipid transport were used to compare the developmental maturation of these biologic functions in the fetal and neonatal rat and human liver. The results of RNA blot hybridization analyses indicate that steady-state levels of rat HMG-CoA synthase, HMG-CoA reductase and prenyl transferase mRNAs are highest in late fetal life and undergo precipitous (up to 80-fold) co-ordinate reductions immediately after parturition. These changes reflect the ability of the fetal rat liver to produce large quantities of cholesterol as well as the repression of this function during the suckling period in response to exogenous dietary cholesterol. Striking co-ordinate patterns of HMG-CoA synthase, reductase and prenyl-transferase mRNA accumulation were also observed in four extrahepatic rat tissues (brain, lung, intestine and kidney) during the perinatal period. The concentrations of all three mRNAs in the 8-week-old human fetal liver are similar to those observed throughout subsequent intrauterine development with less than 2-fold changes noted between the 8th through 25th weeks of gestation. Analysis of the levels of human apo AI, apo AII, apo B and liver fatty acid binding protein mRNAs during this period and in newborn liver specimens also indicated less than 2-3-fold changes. These observations suggest that the 8-week human liver has achieved a high degree of biochemical differentiation with respect to functions involved in lipid metabolism/transport which may be comparable to that present in 19-21 day fetal rat liver. Further analysis of human and rat fetal liver RNAs using cloned cDNAs should permit construction of a developmental time scale correlating hepatic biochemical differentiation to be constructed between these two mammalian species.


American Journal of Pathology | 2012

Epithelial Expression of the Cytosolic Retinoid Chaperone Cellular Retinol Binding Protein II Is Essential for in Vivo Imprinting of Local Gut Dendritic Cells by Lumenal Retinoids

Keely G. McDonald; Matthew R. Leach; Kaitlin W.M. Brooke; Caihong Wang; Leroy W. Wheeler; Elyse K. Hanly; Christopher W. Rowley; Marc S. Levin; Michael Wagner; Ellen Li; Rodney D. Newberry

Dendritic cells (DCs) use all-trans retinoic acid (ATRA) to promote characteristic intestinal responses, including Foxp3(+) Treg conversion, lymphocyte gut homing molecule expression, and IgA production. How this ability to generate ATRA is conferred to DCs in vivo remains largely unstudied. Here, we observed that among DCs, retinaldehyde dehydrogenase (ALDH1), which catalyzes the conversion of retinal to ATRA, was preferentially expressed by small intestine CD103(+) lamina propria (LP) DCs. Retinoids induced LP CD103(+) DCs to generate ATRA via ALDH1 activity. Either biliary or dietary retinoids were required to confer ALDH activity to LP DCs in vivo. Cellular retinol-binding protein II (CRBPII), a cytosolic retinoid chaperone that directs enterocyte retinol and retinal metabolism but is redundant to maintain serum retinol, was required to confer ALDH activity to CD103(+) LP DCs. CRBPII expression was restricted to small intestine epithelial cells, and ALDH activity in CRBPII(-/-) DCs was restored by transfer to a wild-type recipient. CD103(+) LP DCs from CRBPII(-/-) mice had a decreased capacity to promote IgA production. Moreover, CD103(+) DCs preferentially associated with the small intestine epithelium and LP CD103(+) DC ALDH activity, and the ability to promote IgA production was reduced in mice with impaired DC-epithelia associations. These findings demonstrate in vivo roles for the expression of epithelial CRBPII and lumenal retinoids to imprint local gut DCs with an intestinal phenotype.


American Journal of Physiology-gastrointestinal and Liver Physiology | 1998

Regulation of PC4/TIS7 expression in adapting remnant intestine after resection

Deborah C. Rubin; Elzbieta A. Swietlicki; Joseph L. Wang; Marc S. Levin

The adaptive response of the small intestine to loss of functional surface area includes enhanced crypt cell proliferation and enterocyte differentiation. To better define the underlying molecular and cellular mechanisms, we have cloned rat genes that are specifically regulated in the adaptive gut after 70% small intestinal resection. One of these is the immediate early gene PC4/TIS7. Compared with sham-resected control ileum, PC4/TIS7 mRNA levels in the adaptive remnant ileum were markedly increased at 16 and 48 h but not 1 wk after resection. Greater augmentation of PC4/TIS7 mRNA levels occurred in the ileum compared with the duodenum and proximal jejunum. After resection, the changes in intestinal PC4/TIS7 mRNA levels also exceeded changes in extraintestinal levels. The demonstration by in situ hybridization that villus-associated, but not crypt, cells express PC4/TIS7 mRNA is consistent with a role in regulating cytodifferentiation. The pattern of expression in the Caco-2 cell line is also consistent with such a role. Although the precise function of PC4/TIS7 in adaptation remains unclear, the early and intestine-specific changes in mRNA levels after 70% resection suggest that it might augment the adaptive response by stimulating the production of differentiated enterocytes.The adaptive response of the small intestine to loss of functional surface area includes enhanced crypt cell proliferation and enterocyte differentiation. To better define the underlying molecular and cellular mechanisms, we have cloned rat genes that are specifically regulated in the adaptive gut after 70% small intestinal resection. One of these is the immediate early gene PC4/TIS7. Compared with sham-resected control ileum, PC4/TIS7 mRNA levels in the adaptive remnant ileum were markedly increased at 16 and 48 h but not 1 wk after resection. Greater augmentation of PC4/TIS7 mRNA levels occurred in the ileum compared with the duodenum and proximal jejunum. After resection, the changes in intestinal PC4/TIS7 mRNA levels also exceeded changes in extraintestinal levels. The demonstration by in situ hybridization that villus-associated, but not crypt, cells express PC4/TIS7 mRNA is consistent with a role in regulating cytodifferentiation. The pattern of expression in the Caco-2 cell line is also consistent with such a role. Although the precise function of PC4/TIS7 in adaptation remains unclear, the early and intestine-specific changes in mRNA levels after 70% resection suggest that it might augment the adaptive response by stimulating the production of differentiated enterocytes.


Journal of Parenteral and Enteral Nutrition | 2000

Vitamin A Status Modulates Intestinal Adaptation After Partial Small Bowel Resection

Deborah A. Swartz-Basile; Deborah C. Rubin; Marc S. Levin

BACKGROUND Intestinal adaptation after loss of functional small bowel surface area is characterized by cellular hyperplasia and increased absorptive function. Interventions to enhance the adaptive response are needed to decrease the morbidity and mortality associated with short bowel syndrome. Retinoic acid was shown to stimulate crypt cell proliferation in the adapting remnant rat ileum by 6 hours after resection. Thus, vitamin A, which is required for normal epithelial cell proliferation and differentiation and which can modulate programmed cell death, may play an important role in the adapting intestine. On the basis of these observations, the effects of vitamin A deficiency on intestinal morphology, epithelial cell proliferation, and apoptosis in the adapting intestine after resection were investigated. METHODS Weanling male Sprague-Dawley rats fed either a vitamin A-deficient or -sufficient diet for 58 days underwent 70% proximal small bowel resection. The deficient rats were divided into cohorts that were either maintained on the experimental diet after surgery or replenished with vitamin A 20 hours before surgery and switched to the control diet after surgery. RESULTS Ten days after resection, vitamin A-deficient rats exhibited a markedly blunted adaptive response. The adaptive increase in villus height and crypt depth was absent in the deficient rats. However, adaptive increases in crypt cell proliferation were not attenuated by vitamin A deficiency, and there were no differences in apoptotic indices. CONCLUSIONS Vitamin A deficiency inhibits the adaptive response to partial small bowel resection, supporting a role for vitamin A in the adaptive process. Changes in cellular proliferation or programmed cell death are not sufficient to account for this inhibition. This model system will be useful for examining the role of other mechanisms, such as changes in cell-cell and cell-extracellular matrix interactions, and rates of epithelial cell migration and cell extrusion.


Methods in Enzymology | 1990

[58] Structure—Function analyses of mammalian cellular retinol-binding proteins by expression in Escherichia coli

Marc S. Levin; Ellen Li; Jeffrey I. Gordon

Publisher Summary This chapter discusses the structural and functional analyses of mammalian cellular retinol-binding proteins by expression in Escherichia coli. Two desirable components of prokaryotic expression vectors are (1) inducible promoters that can direct efficient transcription of foreign cDNAs and (2) translational control elements that allow efficient initiation of translation of the foreign mRNA transcript to occur. The bacterial strain used for expression of the recombinant protein must be selected with several caveats in mind. First, the induction system used must be compatible with the bacterial phenotype. Second, E. coli proteases such as the product of the lon gene may cause proteolysis of some foreign proteins. Expression of these proteins may be improved by using strains that are protease deficient. Third, variables that can affect the efficiency of production of recombinant proteins include incubation temperature, growth medium, cell density, timing of induction, and the length of fermentation after induction of foreign protein synthesis. Finally, it should be noted that E. coli cannot support many critical posttranslational modifications of mammalian proteins.


Journal of Parenteral and Enteral Nutrition | 1998

Advances in nutrition and gastroenterology : Summary of the 1997 A.S.P.E.N. Research Workshop

Samuel Klein; David H. Alpers; Richard J. Grand; Marc S. Levin; H. C. Lin; C. M. Mansbach; C. Burant; P. Reeds; J. L. Rombeau

BACKGROUND The 1997 A.S.P.E.N. Research Workshop was held at the annual meeting in San Francisco, on January 26, 1997. The workshop focused on advances in clinical and basic research involving the interface between nutrient and luminal gastroenterology. METHODS Presentations on the genetic regulation of gastrointestinal development, the molecular biology of small intestinal adaptation, the effect of nutrition support on intestinal mucosal mass, the relationship between nutrition and gastrointestinal motility, nutrient absorption, and gastrointestinal tract substrate metabolism were made by the preeminent leaders in the field. RESULTS The investigators presented an insightful analysis of each topic by reviewing data from their own laboratories and the published literature. CONCLUSIONS This workshop underscored the important interactions between nutrition and luminal gastroenterology at the basic science, metabolic/physiologic, and clinical levels. The integration of presentations from the different disciplines provided a unique interaction of information and ideas to advance our understanding of nutrition and gastrointestinal tract.

Collaboration


Dive into the Marc S. Levin's collaboration.

Top Co-Authors

Avatar

Deborah C. Rubin

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Elzbieta A. Swietlicki

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Lihua Wang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Anisa Shaker

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jianyun Lu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Brad W. Warner

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Shashi Bala

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Shujun Jiang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Yuzhu Tang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Derek Wakeman

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge