Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc S. Weinberg is active.

Publication


Featured researches published by Marc S. Weinberg.


Molecular Therapy | 2014

Parkinson's disease gene therapy: success by design meets failure by efficacy.

Raymond T. Bartus; Marc S. Weinberg; R. Jude Samulski

Over the past decade, nine gene therapy clinical trials for Parkinsons disease (PD) have been initiated and completed. Starting with considerable optimism at the initiation of each trial, none of the programs has yet borne sufficiently robust clinical efficacy or found a clear path toward regulatory approval. Despite the immediately disappointing nature of the efficacy outcomes in these trials, the clinical data garnered from the individual studies nonetheless represent tangible and significant progress for the gene therapy field. Collectively, the clinical trials demonstrate that we have overcome the major safety hurdles previously suppressing central nervous system (CNS) gene therapy, for none produced any evidence of untoward risk or harm after administration of various vector-delivery systems. More importantly, these studies also demonstrated controlled, highly persistent generation of biologically active proteins targeted to structures deep in the human brain. Therefore, a renewed, focused emphasis must be placed on advancing clinical efficacy by improving clinical trial design, patient selection and outcome measures, developing more predictive animal models to support clinical testing, carefully performing retrospective analyses, and most importantly moving forward—beyond our past limits.


American Journal of Physiology-endocrinology and Metabolism | 2009

Diurnal expression of functional and clock-related genes throughout the rat HPA axis: system-wide shifts in response to a restricted feeding schedule

Milena Girotti; Marc S. Weinberg; Robert L. Spencer

The diurnal rhythm of glucocorticoid secretion depends on the suprachiasmatic (SCN) and dorsomedial (putative food-entrainable oscillator; FEO) nuclei of the hypothalamus, two brain regions critical for coordination of physiological responses to photoperiod and feeding cues, respectively. In both cases, time keeping relies upon diurnal oscillations in clock gene (per1, per2, and bmal) expression. Glucocorticoids may play a key role in synchronization of the rest of the body to photoperiod and food availability. Thus glucocorticoid secretion may be both a target and an important effector of SCN and FEO output. Remarkably little, however, is known about the functional diurnal rhythms of the individual components of the hypothalamic-pituitary-adrenal (HPA) axis. We examined the 24-h pattern of hormonal secretion (ACTH and corticosterone), functional gene expression (c-fos, crh, pomc, star), and clock gene expression (per1, per2 and bmal) in each compartment of the HPA axis under a 12:12-h light-dark cycle and compared with relevant SCN gene expression. We found that each anatomic component of the HPA axis has a unique circadian signature of functional and clock gene expression. We then tested the susceptibility of these measures to nonphotic entrainment cues by restricting food availability to only a portion of the light phase of a 12:12-h light-dark cycle. Restricted feeding is a strong zeitgeber that can dramatically alter functional and clock gene expression at all levels of the HPA axis, despite ongoing photoperiod cues and only minor changes in SCN clock gene expression. Thus the HPA axis may be an important mediator of the body entrainment to the FEO.


Neuroscience | 2010

Medial prefrontal cortex activity can disrupt the expression of stress response habituation

Marc S. Weinberg; Drew C. Johnson; Aadra P. Bhatt; Robert L. Spencer

Recent findings suggest that the expression of hypothalamic-pituitary-adrenal (HPA) axis stress response adaptation in rats depends on top-down neural control. We therefore examined whether the medial prefrontal cortex (mPFC) modulates expression of stress response habituation. We transiently suppressed (muscimol microinfusion) or stimulated (picrotoxin microinfusion) mPFC neural activity in rats and studied the consequence on the first time response to psychological stress (restraint) or separately on the development and expression of habituation to repeated restraint. We monitored both the hormonal (corticosterone) and neural (forebrain c-fos mRNA) response to stress. Inactivation of the mPFC had no effect on the HPA-axis response to first time restraint, however increased mPFC activity attenuated stress-induced HPA-axis activity. In a three day repeated restraint stress regimen, inactivation of the mPFC on days 1 and 2, but not day 3, prevented the expression of HPA-axis hormone response habituation. In these same rats, the mPFC activity on day 3 interfered with the expression of c-fos mRNA habituation selectively within the mPFC, lateral septum and hypothalamic paraventricular nucleus. In contrast, inactivation of the mPFC only on day 3, or on all 3 days did not interfere with the expression of habituation. We conclude that the mPFC can permit or disrupt expression of HPA-axis stress response habituation, and this control depends on alteration of neural activity within select brain regions. A possible implication of these findings is that the dysregulation of PFC activity associated with depression and post-traumatic stress disorder may contribute to impaired expression of stress-response adaptation and consequently exacerbation of those disorders.


Journal of Virology | 2010

Mutagenesis of adeno-associated virus type 2 capsid protein VP1 uncovers new roles for basic amino acids in trafficking and cell-specific transduction.

Jarrod S. Johnson; Chengwen Li; Nina DiPrimio; Marc S. Weinberg; Thomas J. McCown; R. Jude Samulski

ABSTRACT The N termini of the capsid proteins VP1 and VP2 of adeno-associated virus (AAV) play important roles in subcellular steps of infection and contain motifs that are highly homologous to a phospholipase A2 (PLA2) domain and nuclear localization signals (NLSs). To more clearly understand how virion components influence infection, we have generated mutations in these regions and examined their effects on subcellular trafficking, capsid stability, transduction, and sensitivity to pharmacological enhancement. All mutants tested assembled into capsids; retained the correct ratio of VP1, VP2, and VP3; packaged DNA similarly to recombinant AAV2 (rAAV2); and displayed similar stability profiles when heat denatured. Confocal microscopy demonstrated that these mutants trafficked through a perinuclear region in the vicinity of the Golgi apparatus, with a subset of mutants displaying more-diffuse localization consistent with an NLS-deficient phenotype. When tested for viral transduction, two mutant classes emerged. Class I (BR1−, BR2−, and BR2+K) displayed partial transduction, whereas class II (VP3only, 75HD/AN, BR3−, and BR3+K) were severely defective. Surprisingly, one class II mutant (BR3+K) trafficked identically to rAAV2 and accumulated in the nucleolus, a step recently described by our laboratory that occurs with wild-type infection. The BR3+K mutant, containing an alanine-to-lysine substitution in the third basic region of VP1, was 10- to 100-fold-less infectious than rAAV2 in transformed cell lines (such as HEK-293, HeLa, and CV1-T cells), but in contrast, it was indistinguishable from rAAV2 in several nontransformed cell lines, as well as in tissues (liver, brain, and muscle) in vivo. Complementation studies with pharmacological adjuvants or adenovirus coinfection suggested that additional positive charges in NLS regions restrict mobilization in the nucleus and limit transduction in a transformed-cell-specific fashion. Remarkably, besides displaying cell-type-specific transduction, this is the first description of a capsid mutant indicating that nuclear entry is not sufficient for AAV-mediated transduction and suggests that additional steps (i.e., subnuclear mobilization or uncoating) limit successful AAV infection.


Endocrinology | 2009

Repeated ferret odor exposure induces different temporal patterns of same-stressor habituation and novel-stressor sensitization in both hypothalamic-pituitary-adrenal axis activity and forebrain c-fos expression in the rat

Marc S. Weinberg; Aadra P. Bhatt; Milena Girotti; Cher V. Masini; Heidi E.W. Day; Serge Campeau; Robert L. Spencer

Repeated exposure to a moderately intense stressor typically produces attenuation of the hypothalamic-pituitary-adrenal (HPA) axis response (habituation) on re-presentation of the same stressor; however, if a novel stressor is presented to the same animals, the HPA axis response may be augmented (sensitization). The extent to which this adaptation is also evident within neural activity patterns is unknown. This study tested whether repeated ferret odor (FO) exposure, a moderately intense psychological stressor for rats, leads to both same-stressor habituation and novel-stressor sensitization of the HPA axis response and neuronal activity as determined by immediate early gene induction (c-fos mRNA). Rats were presented with FO in their home cages for 30 min a day for up to 2 wk and subsequently challenged with FO or restraint. Rats displayed HPA axis activity habituation and widespread habituation of c-fos mRNA expression (in situ hybridization) throughout the brain in as few as three repeated presentations of FO. However, repeated FO exposure led to a more gradual development of sensitized HPA-axis and c-fos mRNA responses to restraint that were not fully evident until after 14 d of prior FO exposure. The sensitized response was evident in many of the same brain regions that displayed habituation, including primary sensory cortices and the prefrontal cortex. The shared spatial expression but distinct temporal development of habituation and sensitization neural response patterns suggests two independent processes with opposing influences across overlapping brain systems.


Neuroscience | 2007

Restraint-induced fra-2 and c-fos expression in the rat forebrain: relationship to stress duration

Marc S. Weinberg; Milena Girotti; Robert L. Spencer

The protein product of the fra-2 gene (Fra-2), a fos-family member, can compete with Fos protein for participation in activating protein-1 (AP-1) transcription factor complexes and each protein can contribute different transactivational consequences to an AP-1 complex. To date, there is limited characterization of fra-2 mRNA expression in the rat forebrain. We examined basal and restraint-induced mRNA expression (in situ hybridization) of fra-2 in the rat forebrain and compared its temporal-spatial pattern to c-fos. In contrast to the very low basal expression of c-fos, fra-2 basal expression was moderately high throughout cortex and some subcortical structures, including prominent basal expression in the hypothalamic paraventricular nucleus (PVN). Restraint-induced fra-2 expression was quantified in the prefrontal cortex (PFC), lateral septum (LS) and PVN. Maximal fra-2 gene induction in the PFC and LS was delayed (60 min) after restraint onset with respect to c-fos (15 min), whereas in the PVN, fra-2 mRNA increased within 15 min of restraint. Additionally we compared c-fos and fra-2 gene expression in rats given shorter or longer restraint durations, but equal total time from stress onset to sample collection, to determine the extent to which the kinetics of gene induction matched that of a hypothalamic-pituitary-adrenal axis hormone response. Rats given 45 min recovery after 15 min restraint showed less c-fos expression in the PVN, less fra-2 expression in the prelimbic and infralimbic PFC, and no difference in the LS compared with rats restrained for 60 min. Thus, the expression of both genes was sensitive to stressor duration, but this sensitivity varied with brain region. Differential basal and stress-induced expression patterns of the fra-2 and c-fos genes are likely to have important functional consequences for AP-1 transcription factor dependent regulation of neural plasticity.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Combination therapy utilizing shRNA knockdown and an optimized resistant transgene for rescue of diseases caused by misfolded proteins

Chengwen Li; Pingjie Xiao; Steven J. Gray; Marc S. Weinberg; R. Jude Samulski

Molecular knockdown of disease proteins and restoration of wild-type activity represent a promising but challenging strategy for the treatment of diseases that result from the accumulation of misfolded proteins (i.e., Huntington disease, amyotrophic lateral sclerosis, and α-1 antitrypsin deficiency). In this study we used alpha-1 antitrypsin (AAT) deficiency with the piZZ mutant phenotype as a model system to evaluate the efficiency of gene-delivery approaches that both silence the piZZ transcript (e.g., shRNA) and restore circulating wild-type AAT expression from resistant codon-optimized AAT (AAT-opt) transgene cassette using adeno-associated virus (AAV) vector delivery. After systemic injection of a self-complimentary AAV serotype 8 (scAAV8) vector encoding shRNA in piZZ transgenic mice, both mutant AAT mRNA in the liver and defected serum protein level were inhibited by 95%, whereas liver pathology, as monitored by dPAS and fibrosis staining, reversed. To restore blood AAT levels in AAV8/shRNA-treated mice, several strategies to restore functional AAT levels were tested, including using AAV AAT-opt transgene cassettes targeted to muscle and liver, or combination vectors carrying piZZ shRNA and AAT-opt transgenes separately, or a single bicistronic AAV vector. With these molecular approaches, we observed over 90% knockdown of mutant AAT with a 13- to 30-fold increase of circulating wild-type AAT protein from the shRNA-resistant AAT-opt cassette. The molecular approaches applied in this study can simultaneously prevent liver pathology and restore blood AAT concentration in AAT deficiencies. Based on these observations, similar gene-therapy strategies could be considered for any diseases caused by accumulation of misfolded proteins.


Clinical Cancer Research | 2017

Skeletal Muscle Measures as Predictors of Toxicity, Hospitalization, and Survival in Patients with Metastatic Breast Cancer Receiving Taxane Based Chemotherapy

Shlomit Strulov Shachar; Allison M. Deal; Marc S. Weinberg; Kirsten A. Nyrop; Grant R. Williams; Tomohiro F. Nishijima; Julia M. Benbow; Hyman B. Muss

Purpose: Severe skeletal muscle (SM) loss (sarcopenia) is associated with poor cancer outcomes, including reduced survival and increased toxicity. This study investigates SM measures in metastatic breast cancer (MBC) patients receiving first-line taxane-based chemotherapy and evaluates associations with treatment toxicity and other outcomes. Experimental Design: Using computerized tomography (CT) images taken for the evaluation of disease burden, skeletal muscle area (SMA), and density (SMD) were measured at the third lumbar vertebrae. Sarcopenia was defined as skeletal muscle index (SMI = SMA/height2) ≤ 41. Skeletal muscle gauge (SMG) was created by multiplying SMI × SMD. Fisher exact tests, t tests, the Kaplan–Meier method, and Cox regression modeling were used. Results: MBC patients (N = 40), median age 55 (range, 34–80), 58% sarcopenic, median SMG 1296 AU (SD, 522). Grade 3–4 toxicity was found in 57% of sarcopenic versus 18% of non-sarcopenic patients (P = 0.02). Toxicity-related hospitalizations were also higher in sarcopenic patients (39% vs. 0%, P = 0.005) as were any adverse events—defined as any grade 3–4 toxicities, hospitalizations, dose reductions, or dose delay—(74% vs. 35%, P = 0.02). Low SMG was associated with grade 3–4 toxicity (P = 0.04), hospitalization (P = 0.01), and time to treatment failure (for progression or toxicity; P = 0.03). Low SMG had a borderline significant association with any adverse event (P = 0.06) and overall survival (P = 0.07). Conclusions: SM measures are associated with toxicity outcomes and survival in MBC patients receiving first-line taxane-based chemotherapy. Further studies are needed to explore how routinely obtained CT scans can be used to individualize dosing and improve treatment planning. Clin Cancer Res; 23(3); 658–65. ©2016 AACR.


The Journal of Neuroscience | 2014

A novel role for brain interleukin-6: Facilitation of cognitive flexibility in rat orbitofrontal cortex

Jennifer J. Donegan; Milena Girotti; Marc S. Weinberg; David A. Morilak

Cytokines, small proteins released by the immune system to combat infection, are typically studied under inflammatory conditions. However, these molecules are also expressed in the brain in basal, nonpathological states, where they can regulate neuronal processes, such as learning and memory. However, little is known about how cytokine signaling in the brain may influence higher-order cognitive functions. Cognitive flexibility is one such executive process, mediated by the prefrontal cortex, which requires an adaptive modification of learned behaviors in response to environmental change. We explored the role of basal IL-6 signaling in the orbitofrontal cortex (OFC) in reversal learning, a form of cognitive flexibility that can be measured in the rat using the attentional set-shifting test. We found that inhibiting IL-6 or its downstream JAK/STAT signaling pathway in the OFC impaired reversal learning, suggesting that basal IL-6 and JAK/STAT signaling facilitate cognitive flexibility. Further, we demonstrated that elevating IL-6 in the OFC by adeno-associated virus-mediated gene delivery reversed a cognitive deficit induced by chronic stress, thus identifying IL-6 and the downstream JAK/STAT signaling pathway as potentially novel therapeutic targets for the treatment of stress-related psychiatric diseases associated with cognitive dysfunction.


Experimental Neurology | 2013

Opposing actions of hippocampus TNFα receptors on limbic seizure susceptibility.

Marc S. Weinberg; Bonita L. Blake; Thomas J. McCown

Resected epileptic tissues exhibit elements of chronic neuroinflammation that include elevated TNFα and increased TNFα receptor activation, but the seizure related consequences of chronic TNFα expression remain unknown. Twenty four hours after acute limbic seizures the rat hippocampus exhibited a rapid upregulation of TNFR1, but a simultaneous downregulation of TNFR2. These limbic seizures also evoked significant increases in measures of neuroinflammation and caused significant neuronal cell death in both the hilus and CA3 of the hippocampus. In order to mimic a state of chronic TNFα exposure, adeno-associated viral vectors were packaged with a TNF receptor 1 (TNFR1) specific agonist, human TNFα, or a TNF receptor 1/2 agonist, rat TNFα. Subsequently, chronic hippocampal overexpression of either TNFR ligand caused microglial activation and blood-brain barrier compromise, a pattern similar to limbic seizure-induced neuroinflammation. However, no evidence was found for neuronal cell death or spontaneous seizure activity. Thus, chronic, in vivo TNFα expression and the subsequent neuroinflammation alone did not cause cell death or elicit seizure activity. In contrast, chronic hippocampal activation of TNFR1 alone significantly increased limbic seizure sensitivity in both amygdala kainic acid and electrical amygdala kindling models, while chronic activation of both TNFR1 and TNFR2 significantly attenuated the amygdala kindling rate. With regard to endogenous TNFα, chronic hippocampal expression of a TNFα decoy receptor significantly reduced seizure-induced cell death in the hippocampus, but did not alter seizure susceptibility. These findings suggest that blockade of endogenous TNFα could attenuate seizure related neuropathology, while selective activation of TNFR2 could exert beneficial therapeutic effects on in vivo seizure sensitivity.

Collaboration


Dive into the Marc S. Weinberg's collaboration.

Top Co-Authors

Avatar

Grant R. Williams

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Allison M. Deal

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Hyman B. Muss

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Robert L. Spencer

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Thomas J. McCown

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Kirsten A. Nyrop

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Milena Girotti

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

R. Jude Samulski

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chengwen Li

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge