Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc S. Wold is active.

Publication


Featured researches published by Marc S. Wold.


The EMBO Journal | 1999

Replication‐mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA‐dependent protein kinase and dissociates RPA:DNA‐PK complexes

Rong-Guang Shao; Chun-Xia Cao; Hongliang Zhang; Kurt W. Kohn; Marc S. Wold; Yves Pommier

Replication protein A (RPA) is a DNA single‐strand binding protein essential for DNA replication, recombination and repair. In human cells treated with the topoisomerase inhibitors camptothecin or etoposide (VP‐16), we find that RPA2, the middle‐sized subunit of RPA, becomes rapidly phosphorylated. This response appears to be due to DNA‐dependent protein kinase (DNA‐PK) and to be independent of p53 or the ataxia telangiectasia mutated (ATM) protein. RPA2 phosphorylation in response to camptothecin required ongoing DNA replication. Camptothecin itself partially inhibited DNA synthesis, and this inhibition followed the same kinetics as DNA‐PK activation and RPA2 phosphorylation. DNA‐PK activation and RPA2 phosphorylation were prevented by the cell‐cycle checkpoint abrogator 7‐hydroxystaurosporine (UCN‐01), which markedly potentiates camptothecin cytotoxicity. The DNA‐PK catalytic subunit (DNA‐PKcs) was found to bind RPA which was replaced by the Ku autoantigen upon camptothecin treatment. DNA‐PKcs interacted directly with RPA1 in vitro. We propose that the encounter of a replication fork with a topoisomerase–DNA cleavage complex could lead to a juxtaposition of replication fork‐associated RPA and DNA double‐strand end‐associated DNA‐PK, leading to RPA2 phosphorylation which may signal the presence of DNA damage to an S‐phase checkpoint mechanism.


Molecular and Cellular Biology | 1992

Binding properties of replication protein A from human and yeast cells

Changsoo Kim; R. O. Snyder; Marc S. Wold

Replication protein A (RP-A; also known as replication factor A and human SSB), is a single-stranded DNA-binding protein that is required for simian virus 40 DNA replication in vitro. RP-A isolated from both human and yeast cells is a very stable complex composed of 3 subunits (70, 32, and 14 kDa). We have analyzed the DNA-binding properties of both human and yeast RP-A in order to gain a better understanding of their role(s) in DNA replication. Human RP-A has high affinity for single-stranded DNA and low affinity for RNA and double-stranded DNA. The apparent affinity constant of RP-A for single-stranded DNA is in the range of 10(9) M-1. RP-A has a binding site size of approximately 30 nucleotides and does not bind cooperatively. The binding of RP-A to single-stranded DNA is partially sequence dependent. The affinity of human RP-A for pyrimidines is approximately 50-fold higher than its affinity for purines. The binding properties of yeast RP-A are similar to those of the human protein. Both yeast and human RP-A bind preferentially to the pyrimidine-rich strand of a homologous origin of replication: the ARS307 or the simian virus 40 origin of replication, respectively. This asymmetric binding suggests that RP-A could play a direct role in the process of initiation of DNA replication.


Journal of Biological Chemistry | 2006

Replication protein A directs loading of the DNA damage checkpoint clamp to 5'-DNA junctions.

Jerzy Majka; Sara K. Binz; Marc S. Wold; Peter M. J. Burgers

The heterotrimeric checkpoint clamp comprises the Saccharomyces cerevisiae Rad17, Mec3, and Ddc1 subunits (Rad17/3/1, the 9-1-1 complex in humans). This DNA damage response factor is loaded onto DNA by the Rad24-RFC (replication factor C-like complex with Rad24) clamp loader and ATP. Although Rad24-RFC alone does not bind to naked partial double-stranded DNA, coating of the single strand with single-stranded DNA-binding protein RPA (replication protein A) causes binding of Rad24-RFC via interactions with RPA. However, RPA-mediated binding is abrogated when the DNA is coated with RPA containing a rpa1-K45E (rfa1-t11) mutation. These properties allowed us to determine the role of RPA in clamp-loading specificity. The Rad17/3/1 clamp is loaded with comparable efficiency onto naked primer/template DNA with either a 3′-junction or a 5′-junction. Remarkably, when the DNA was coated with RPA, loading of Rad17/3/1 at 3′-junctions was completely inhibited, thereby providing specificity to loading at 5′-junctions. However, Rad17/3/1 loaded at 5′-junctions can slide across double-stranded DNA to nearby 3′-junctions and thereby affect the activity of proteins that act at 3′-termini. These studies show a unique specificity of the checkpoint loader for 5′-junctions of RPA-coated DNA. The implications of this specificity for checkpoint function are discussed.


Molecular and Cellular Biology | 2004

Replication Protein A (RPA) Phosphorylation Prevents RPA Association with Replication Centers

Vitaly M. Vassin; Marc S. Wold; James A. Borowiec

ABSTRACT Mammalian replication protein A (RPA) undergoes DNA damage-dependent phosphorylation at numerous sites on the N terminus of the RPA2 subunit. To understand the functional significance of RPA phosphorylation, we expressed RPA2 variants in which the phosphorylation sites were converted to aspartate (RPA2D) or alanine (RPA2A). Although RPA2D was incorporated into RPA heterotrimers and supported simian virus 40 DNA replication in vitro, the RPA2D mutant was selectively unable to associate with replication centers in vivo. In cells containing greatly reduced levels of endogenous RPA2, RPA2D again did not localize to replication sites, indicating that the defect in supporting chromosomal DNA replication is not due to competition with the wild-type protein. Use of phosphospecific antibodies demonstrated that endogenous hyperphosphorylated RPA behaves similarly to RPA2D. In contrast, under DNA damage or replication stress conditions, RPA2D, like RPA2A and wild-type RPA2, was competent to associate with DNA damage foci as determined by colocalization with γ-H2AX. We conclude that RPA2 phosphorylation prevents RPA association with replication centers in vivo and potentially serves as a marker for sites of DNA damage.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Reconstitution of RPA-covered single-stranded DNA-activated ATR-Chk1 signaling

Jun Hyuk Choi; Laura A. Lindsey-Boltz; Michael G. Kemp; Aaron C. Mason; Marc S. Wold; Aziz Sancar

ATR kinase is a critical upstream regulator of the checkpoint response to various forms of DNA damage. Previous studies have shown that ATR is recruited via its binding partner ATR-interacting protein (ATRIP) to replication protein A (RPA)-covered single-stranded DNA (RPA-ssDNA) generated at sites of DNA damage where ATR is then activated by TopBP1 to phosphorylate downstream targets including the Chk1 signal transducing kinase. However, this critical feature of the human ATR-initiated DNA damage checkpoint signaling has not been demonstrated in a defined system. Here we describe an in vitro checkpoint system in which RPA-ssDNA and TopBP1 are essential for phosphorylation of Chk1 by the purified ATR-ATRIP complex. Checkpoint defective RPA mutants fail to activate ATR kinase in this system, supporting the conclusion that this system is a faithful representation of the in vivo reaction. Interestingly, we find that an alternative form of RPA (aRPA), which does not support DNA replication, can substitute for the checkpoint function of RPA in vitro, thus revealing a potential role for aRPA in the activation of ATR kinase. We also find that TopBP1 is recruited to RPA-ssDNA in a manner dependent on ATRIP and that the N terminus of TopBP1 is required for efficient recruitment and activation of ATR kinase.


Molecular and Cellular Biochemistry | 1999

Specific down-regulation of annexin II expression in human cells interferes with cell proliferation

Yangping Chiang; Angie Rizzino; Zita A. Sibenaller; Marc S. Wold; Jamboor K. Vishwanatha

The protein-tyrosine kinase substrate annexin II is a growth regulated gene whose expression is increased in several human cancers. While the precise function of this protein is not understood, annexin II is proposed to be involved in multiple physiological activities, including DNA synthesis and cell proliferation. Targeted disruption of the annexin II gene affects calcium signaling, tyrosine phosphorylation and apoptosis, indicating the important physiological role of this protein. We used a transient co-transfection assay to regulate annexin II expression in human HeLa, 293 and 293T cells, and measured the effects of annexin II down regulation on DNA synthesis and proliferation. Transfection of cells with an antisense annexin II vector results in inhibition of cell division and proliferation, with concomitant reduction in annexin II message and protein levels. Cellular DNA synthesis is significantly reduced in antisense transfected cells. Replication extracts made from antisense transfected cells have significantly reduced efficiency to support SV40 in vitro DNA replication, while the extracts made from sense transfected cells are fully capable of replication. Our results indicate an important role of annexin II in cellular DNA synthesis and cell proliferation.


Molecular and Cellular Biology | 2011

Inhibition of Homologous Recombination by DNA-Dependent Protein Kinase Requires Kinase Activity, Is Titratable, and Is Modulated by Autophosphorylation

Jessica A. Neal; Van Dang; Pauline Douglas; Marc S. Wold; Susan P. Lees-Miller; Katheryn Meek

ABSTRACT How a cell chooses between nonhomologous end joining (NHEJ) and homologous recombination (HR) to repair a double-strand break (DSB) is a central and largely unanswered question. Although there is evidence of competition between HR and NHEJ, because of the DNA-dependent protein kinase (DNA-PK)s cellular abundance, it seems that there must be more to the repair pathway choice than direct competition. Both a mutational approach and chemical inhibition were utilized to address how DNA-PK affects HR. We find that DNA-PKs ability to repress HR is both titratable and entirely dependent on its enzymatic activity. Still, although requisite, robust enzymatic activity is not sufficient to inhibit HR. Emerging data (including the data presented here) document the functional complexities of DNA-PKs extensive phosphorylations that likely occur on more than 40 sites. Even more, we show here that certain phosphorylations of the DNA-PK large catalytic subunit (DNA-PKcs) clearly promote HR while inhibiting NHEJ, and we conclude that the phosphorylation status of DNA-PK impacts how a cell chooses to repair a DSB.


Journal of Biological Chemistry | 2008

Cellular functions of human RPA1: Multiple roles of domains in replication, repair, and checkpoints

Stuart J. Haring; Aaron C. Mason; Sara K. Binz; Marc S. Wold

In eukaryotes, the single strand DNA (ssDNA)-binding protein, replication protein A (RPA), is essential for DNA replication, repair, and recombination. RPA is composed of the following three subunits: RPA1, RPA2, and RPA3. The RPA1 subunit contains four structurally related domains and is responsible for high affinity ssDNA binding. This study uses a depletion/replacement strategy in human cells to reveal the contributions of each domain to RPA cellular functions. Mutations that substantially decrease ssDNA binding activity do not necessarily disrupt cellular RPA function. Conversely, mutations that only slightly affect ssDNA binding can dramatically affect cellular function. The N terminus of RPA1 is not necessary for DNA replication in the cell; however, this region is important for the cellular response to DNA damage. Highly conserved aromatic residues in the high affinity ssDNA-binding domains are essential for DNA repair and cell cycle progression. Our findings suggest that as long as a threshold of RPA-ssDNA binding activity is met, DNA replication can occur and that an RPA activity separate from ssDNA binding is essential for function in DNA repair.


Molecular and Cellular Biology | 2006

Identification of Genomic Sites That Bind the Drosophila Suppressor of Hairy-wing Insulator Protein

Timothy J. Parnell; Emily J. Kuhn; Brian L. Gilmore; Cecilia Helou; Marc S. Wold; Pamela K. Geyer

ABSTRACT Eukaryotic genomes are divided into independent transcriptional domains by DNA elements known as insulators. The gypsy insulator, a 350-bp element isolated from the Drosophila gypsy retrovirus, contains twelve degenerate binding sites for the Suppressor of Hairy-wing [Su(Hw)] protein. Su(Hw) associates with over 500 non-gypsy genomic sites, the functions of which are largely unknown. Using a bioinformatics approach, we identified 37 putative Su(Hw) insulators (pSIs) that represent regions containing clustered matches to the gypsy insulator Su(Hw) consensus binding sequence. The majority of these pSIs contain fewer than four Su(Hw) binding sites, with only seven showing in vivo Su(Hw) association, as demonstrated by chromatin immunoprecipitation. To understand the properties of the pSIs, these elements were tested for enhancer-blocking capabilities using a transgene assay system. In a complementary set of experiments, effects of the pSIs on transcriptional regulation of genes at the natural genomic location were determined. Our data suggest that pSIs have complex genomic functions and, in some cases, establish insulators. These studies provide the first direct evidence that the Su(Hw) protein contributes to the regulation of gene expression in the Drosophila genome through the establishment of endogenous insulators.


Journal of Molecular Biology | 2014

Diffusion of human Replication Protein A along single stranded DNA

Binh Nguyen; Joshua E. Sokoloski; Roberto Galletto; Elliot L. Elson; Marc S. Wold; Timothy M. Lohman

Replication protein A (RPA) is a eukaryotic single-stranded DNA (ssDNA) binding protein that plays critical roles in most aspects of genome maintenance, including replication, recombination and repair. RPA binds ssDNA with high affinity, destabilizes DNA secondary structure and facilitates binding of other proteins to ssDNA. However, RPA must be removed from or redistributed along ssDNA during these processes. To probe the dynamics of RPA-DNA interactions, we combined ensemble and single-molecule fluorescence approaches to examine human RPA (hRPA) diffusion along ssDNA and find that an hRPA heterotrimer can diffuse rapidly along ssDNA. Diffusion of hRPA is functional in that it provides the mechanism by which hRPA can transiently disrupt DNA hairpins by diffusing in from ssDNA regions adjacent to the DNA hairpin. hRPA diffusion was also monitored by the fluctuations in fluorescence intensity of a Cy3 fluorophore attached to the end of ssDNA. Using a novel method to calibrate the Cy3 fluorescence intensity as a function of hRPA position on the ssDNA, we estimate a one-dimensional diffusion coefficient of hRPA on ssDNA of D1~5000nt(2) s(-1) at 37°C. Diffusion of hRPA while bound to ssDNA enables it to be readily repositioned to allow other proteins access to ssDNA.

Collaboration


Dive into the Marc S. Wold's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara K. Binz

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary W. Daughdrill

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas J. Kelly

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Cathy S. Hass

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge