Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc Stegger is active.

Publication


Featured researches published by Marc Stegger.


Mbio | 2012

Staphylococcus aureus CC398: Host Adaptation and Emergence of Methicillin Resistance in Livestock

Lance B. Price; Marc Stegger; Henrik Hasman; Maliha Aziz; Jesper Larsen; Paal Skytt Andersen; Talima Pearson; Andrew E. Waters; Jeffrey T. Foster; James M. Schupp; John D. Gillece; Elizabeth M. Driebe; Cindy M. Liu; B. Springer; I. Zdovc; Antonio Battisti; Alessia Franco; J. Zmudzki; Stefan Schwarz; Patrick Butaye; Eric Jouy; Constança Pomba; María Concepción Porrero; R. Ruimy; T. C. Smith; D. A. Robinson; J.S. Weese; C. S. Arriola; F. Yu; F. Laurent

ABSTRACT Since its discovery in the early 2000s, methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 398 (CC398) has become a rapidly emerging cause of human infections, most often associated with livestock exposure. We applied whole-genome sequence typing to characterize a diverse collection of CC398 isolates (n = 89), including MRSA and methicillin-susceptible S. aureus (MSSA) from animals and humans spanning 19 countries and four continents. We identified 4,238 single nucleotide polymorphisms (SNPs) among the 89 core genomes. Minimal homoplasy (consistency index = 0.9591) was detected among parsimony-informative SNPs, allowing for the generation of a highly accurate phylogenetic reconstruction of the CC398 clonal lineage. Phylogenetic analyses revealed that MSSA from humans formed the most ancestral clades. The most derived lineages were composed predominantly of livestock-associated MRSA possessing three different staphylococcal cassette chromosome mec element (SCCmec) types (IV, V, and VII-like) including nine subtypes. The human-associated isolates from the basal clades carried phages encoding human innate immune modulators that were largely missing among the livestock-associated isolates. Our results strongly suggest that livestock-associated MRSA CC398 originated in humans as MSSA. The lineage appears to have undergone a rapid radiation in conjunction with the jump from humans to livestock, where it subsequently acquired tetracycline and methicillin resistance. Further analyses are required to estimate the number of independent genetic events leading to the methicillin-resistant sublineages, but the diversity of SCCmec subtypes is suggestive of strong and diverse antimicrobial selection associated with food animal production. IMPORTANCE Modern food animal production is characterized by densely concentrated animals and routine antibiotic use, which may facilitate the emergence of novel antibiotic-resistant zoonotic pathogens. Our findings strongly support the idea that livestock-associated MRSA CC398 originated as MSSA in humans. The jump of CC398 from humans to livestock was accompanied by the loss of phage-carried human virulence genes, which likely attenuated its zoonotic potential, but it was also accompanied by the acquisition of tetracycline and methicillin resistance. Our findings exemplify a bidirectional zoonotic exchange and underscore the potential public health risks of widespread antibiotic use in food animal production. Modern food animal production is characterized by densely concentrated animals and routine antibiotic use, which may facilitate the emergence of novel antibiotic-resistant zoonotic pathogens. Our findings strongly support the idea that livestock-associated MRSA CC398 originated as MSSA in humans. The jump of CC398 from humans to livestock was accompanied by the loss of phage-carried human virulence genes, which likely attenuated its zoonotic potential, but it was also accompanied by the acquisition of tetracycline and methicillin resistance. Our findings exemplify a bidirectional zoonotic exchange and underscore the potential public health risks of widespread antibiotic use in food animal production.


Mbio | 2013

The Epidemic of Extended-Spectrum-β-Lactamase-Producing Escherichia coli ST131 Is Driven by a Single Highly Pathogenic Subclone, H30-Rx

Lance B. Price; James R. Johnson; Maliha Aziz; Connie Clabots; Brian Johnston; Veronika Tchesnokova; Lora Nordstrom; Maria Billig; Sujay Chattopadhyay; Marc Stegger; Paal Skytt Andersen; Talima Pearson; Kim Riddell; Peggy Rogers; Delia Scholes; Barbara C. Kahl; Paul Keim; Evgeni V. Sokurenko

ABSTRACT The Escherichia coli sequence type 131 (ST131) clone is notorious for extraintestinal infections, fluoroquinolone resistance, and extended-spectrum beta-lactamase (ESBL) production, attributable to a CTX-M-15-encoding mobile element. Here, we applied pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing to reconstruct the evolutionary history of the ST131 clone. PFGE-based cluster analyses suggested that both fluoroquinolone resistance and ESBL production had been acquired by multiple ST131 sublineages through independent genetic events. In contrast, the more robust whole-genome-sequence-based phylogenomic analysis revealed that fluoroquinolone resistance was confined almost entirely to a single, rapidly expanding ST131 subclone, designated H30-R. Strikingly, 91% of the CTX-M-15-producing isolates also belonged to a single, well-defined clade nested within H30-R, which was named H30-Rx due to its more extensive resistance. Despite its tight clonal relationship with H30Rx, the CTX-M-15 mobile element was inserted variably in plasmid and chromosomal locations within the H30-Rx genome. Screening of a large collection of recent clinical E. coli isolates both confirmed the global clonal expansion of H30-Rx and revealed its disproportionate association with sepsis (relative risk, 7.5; P < 0.001). Together, these results suggest that the high prevalence of CTX-M-15 production among ST131 isolates is due primarily to the expansion of a single, highly virulent subclone, H30-Rx. IMPORTANCE We applied an advanced genomic approach to study the recent evolutionary history of one of the most important Escherichia coli strains in circulation today. This strain, called sequence type 131 (ST131), causes multidrug-resistant bladder, kidney, and bloodstream infections around the world. The rising prevalence of antibiotic resistance in E. coli is making these infections more difficult to treat and is leading to increased mortality. Past studies suggested that many different ST131 strains gained resistance to extended-spectrum cephalosporins independently. In contrast, our research indicates that most extended-spectrum-cephalosporin-resistant ST131 strains belong to a single highly pathogenic subclone, called H30-Rx. The clonal nature of H30-Rx may provide opportunities for vaccine or transmission prevention-based control strategies, which could gain importance as H30-Rx and other extraintestinal pathogenic E. coli subclones become resistant to our best antibiotics. We applied an advanced genomic approach to study the recent evolutionary history of one of the most important Escherichia coli strains in circulation today. This strain, called sequence type 131 (ST131), causes multidrug-resistant bladder, kidney, and bloodstream infections around the world. The rising prevalence of antibiotic resistance in E. coli is making these infections more difficult to treat and is leading to increased mortality. Past studies suggested that many different ST131 strains gained resistance to extended-spectrum cephalosporins independently. In contrast, our research indicates that most extended-spectrum-cephalosporin-resistant ST131 strains belong to a single highly pathogenic subclone, called H30-Rx. The clonal nature of H30-Rx may provide opportunities for vaccine or transmission prevention-based control strategies, which could gain importance as H30-Rx and other extraintestinal pathogenic E. coli subclones become resistant to our best antibiotics.


Eurosurveillance | 2015

Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015.

Henrik Hasman; Anette M. Hammerum; Frank Hansen; Rene S. Hendriksen; Bente Olesen; Yvonne Agersø; Ea Zankari; Pimlapas Leekitcharoenphon; Marc Stegger; Rolf Sommer Kaas; Lina Cavaco; Dennis Schrøder Hansen; Frank Møller Aarestrup; Robert Skov

The plasmid-mediated colistin resistance gene, mcr-1, was detected in an Escherichia coli isolate from a Danish patient with bloodstream infection and in five E. coli isolates from imported chicken meat. One isolate from chicken meat belonged to the epidemic spreading sequence type ST131. In addition to IncI2, an incX4 replicon was found to be linked to mcr-1. This report follows a recent detection of mcr-1 in E. coli from animals, food and humans in China.


Veterinary Microbiology | 2010

spa type distribution in Staphylococcus aureus originating from pigs, cattle and poultry

Henrik Hasman; Arshnee Moodley; Luca Guardabassi; Marc Stegger; Robert Skov; Frank Møller Aarestrup

Methicillin-resistant S. aureus (MRSA) of clonal complex 398 (CC398) is emerging globally among production animals such as cattle, pigs and poultry as well as among humans. However, little is known about the prevalence of CC398 among methicillin sensitive S. aureus (MSSA) or the relative clonal distribution of S. aureus isolated from these three animal reservoirs. To study this, we have analyzed a random sample of S. aureus consisting of 296 epidemiologically unrelated isolates from infections and colonisation of pigs, cattle and poultry. These were examined and compared by spa and multi-locus sequence typing (MLST) and the result was compared to the most common spa types found among human blood isolates. Little overlap in spa types was seen between isolates from the three animal reservoirs or between animals and humans. Most of the porcine isolates had the spa types t034 (CC398), t1333 (CC30) and t337 (CC9), while the bovine isolates mainly had spa types t518 (CC50), t524 (CC97) and t529 (CC151). None of these spa types are common among human blood isolates in Denmark. Surprisingly, almost all of the poultry isolates (96%) belonged to CC5 (spa types t002 and t306), which is also known to be commonly found among human blood isolates and subsequent pulsed-field gel electrophoresis (PFGE) analysis identified indistinguishable PFGE patterns among a poultry isolate and selected human isolates. In conclusion, strains of MSSA CC398 were commonly present in pigs but not present at all in the other reservoirs tested.


Clinical Microbiology and Infection | 2012

Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecALGA251

Marc Stegger; P.S. Andersen; Angela M. Kearns; Bruno Pichon; Mark A. Holmes; Giles Edwards; Frédéric Laurent; Christopher Teale; Robert Skov; Anders Rhod Larsen

The recent finding of a new mecA homologue, mecA(LGA251) , with only 70% nucleotide homology to the conventional mecA gene has brought the routine testing for mecA as a confirmatory test for methicillin-resistant Staphylococcus aureus (MRSA) into question. A multiplex PCR was designed to differentiate mecA(LGA251) from the known mecA together with detection of lukF-PV and the spa gene fragments, enabling direct spa typing by sequencing of the PCR amplicons. The PCR analysis and subsequent spa typing were validated on a large collection (n=185) of contemporary MRSA and methicillin-sensitive S. aureus isolates, including 127 isolates carrying mecA(LGA251) . The mecA(LGA251) gene was situated in staphylococcal cassette chromosome mec type XI elements, and sequence variation within a 631-bp fragment of mecA(LGA251) in 79 isolates indicated a very conserved gene sequence. Following a successful validation, the multiplex PCR strategy was implemented in the routine testing of MRSA for national surveillance. Over a 2-month period, among 203 samples tested, 12 new MRSA cases caused by isolates carrying mecA(LGA251) were identified, emphasizing the clinical importance of testing for these new MRSA isolates.


Embo Molecular Medicine | 2013

Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC

Ewan M. Harrison; Gavin K. Paterson; Matthew Thomas Geoffrey Holden; Jesper Larsen; Marc Stegger; Anders Rhod Larsen; Andreas Petersen; Robert Skov; Judit Marta Christensen; Anne Bak Zeuthen; Ole Heltberg; Simon R. Harris; Ruth N. Zadoks; Julian Parkhill; Sharon J. Peacock; Mark A. Holmes

Several methicillin‐resistant Staphylococcus aureus (MRSA) lineages that carry a novel mecA homologue (mecC) have recently been described in livestock and humans. In Denmark, two independent human cases of mecC‐MRSA infection have been linked to a livestock reservoir. We investigated the molecular epidemiology of the associated MRSA isolates using whole genome sequencing (WGS). Single nucleotide polymorphisms (SNP) were defined and compared to a reference genome to place the isolates into a phylogenetic context. Phylogenetic analysis revealed two distinct farm‐specific clusters comprising isolates from the human case and their own livestock, whereas human and animal isolates from the same farm only differed by a small number of SNPs, which supports the likelihood of zoonotic transmission. Further analyses identified a number of genes and mutations that may be associated with host interaction and virulence. This study demonstrates that mecC‐MRSA ST130 isolates are capable of transmission between animals and humans, and underscores the potential of WGS in epidemiological investigations and source tracking of bacterial infections.


Veterinary Microbiology | 2009

Tandem repeat sequence analysis of staphylococcal protein A (spa) gene in methicillin-resistant Staphylococcus pseudintermedius.

Arshnee Moodley; Marc Stegger; Nouri L. Ben Zakour; J. Ross Fitzgerald; Luca Guardabassi

A putative staphylococcal protein A (spa) gene was discovered in the genome of Staphylococcus pseudintermedius and used for developing a species-specific spa typing protocol. Thirty-one clinical methicillin-resistant S. pseudintermedius (MRSP) isolates from dogs and cats in four countries were characterized by spa typing, pulsed-field gel electrophoresis (PFGE) and staphylococcal cassette chromosome (SCCmec) typing. The results indicated the occurrence of two MRSP clones that acquired distinct SCCmec elements in Europe (t02, PFGE type A, SCCmec type III,) and California (t06, PFGE type B, SCCmec type V). Sequence analysis of mecA revealed the occurrence of four alleles (mecA1 to mecA4), which correlated with the geographical origin of the isolates and enabled discrimination of two distinct subtypes within the European clone. The newly developed spa typing method appeared to be a promising tool for easy and rapid typing of MRSP, either alone or in combination with SCCmec and mecA typing for fine-structure epidemiological analysis.


PLOS ONE | 2013

Livestock-Associated Methicillin and Multidrug Resistant Staphylococcus aureus Is Present among Industrial, Not Antibiotic-Free Livestock Operation Workers in North Carolina

Jessica L. Rinsky; Maya Nadimpalli; Steve Wing; Devon Hall; Dothula Baron; Lance B. Price; Jesper Larsen; Marc Stegger; Jill R. Stewart; Christopher D. Heaney

Objectives Administration of antibiotics to food animals may select for drug-resistant pathogens of clinical significance, such as methicillin-resistant Staphylococcus aureus (MRSA). In the United States, studies have examined prevalence of MRSA carriage among individuals exposed to livestock, but prevalence of multidrug-resistant S. aureus (MDRSA) carriage and the association with livestock raised with versus without antibiotic selective pressure remains unclear. We aimed to examine prevalence, antibiotic susceptibility, and molecular characteristics of S. aureus among industrial livestock operation (ILO) and antibiotic-free livestock operation (AFLO) workers and household members in North Carolina. Methods Participants in this cross-sectional study were interviewed and provided a nasal swab for S. aureus analysis. Resulting S. aureus isolates were assessed for antibiotic susceptibility, multi-locus sequence type, and absence of the scn gene (a marker of livestock association). Results Among 99 ILO and 105 AFLO participants, S. aureus nasal carriage prevalence was 41% and 40%, respectively. Among ILO and AFLO S. aureus carriers, MRSA was detected in 7% (3/41) and 7% (3/42), respectively. Thirty seven percent of 41 ILO versus 19% of 42 AFLO S. aureus-positive participants carried MDRSA. S. aureus clonal complex (CC) 398 was observed only among workers and predominated among ILO (13/34) compared with AFLO (1/35) S. aureus-positive workers. Only ILO workers carried scn-negative MRSA CC398 (2/34) and scn-negative MDRSA CC398 (6/34), and all of these isolates were tetracycline resistant. Conclusions Despite similar S. aureus and MRSA prevalence among ILO and AFLO-exposed individuals, livestock-associated MRSA and MDRSA (tetracycline-resistant, CC398, scn-negative) were only present among ILO-exposed individuals. These findings support growing concern about antibiotics use and confinement in livestock production, raising questions about the potential for occupational exposure to an opportunistic and drug-resistant pathogen, which in other settings including hospitals and the community is of broad public health importance.


Mbio | 2015

Mapping the Evolution of Hypervirulent Klebsiella pneumoniae

Carsten Struve; Chandler C. Roe; Marc Stegger; Steen G. Stahlhut; Dennis S. Hansen; David M. Engelthaler; Paal Skytt Andersen; Elizabeth M. Driebe; Paul Keim; Karen A. Krogfelt

ABSTRACT Highly invasive, community-acquired Klebsiella pneumoniae infections have recently emerged, resulting in pyogenic liver abscesses. These infections are caused by hypervirulent K. pneumoniae (hvKP) isolates primarily of capsule serotype K1 or K2. Hypervirulent K1 isolates belong to clonal complex 23 (CC23), indicating that this clonal lineage has a specific genetic background conferring hypervirulence. Here, we apply whole-genome sequencing to a collection of K. pneumoniae isolates to characterize the phylogenetic background of hvKP isolates with an emphasis on CC23. Most of the hvKP isolates belonged to CC23 and grouped into a distinct monophyletic clade, revealing that CC23 is a unique clonal lineage, clearly distinct from nonhypervirulent strains. Separate phylogenetic analyses of the CC23 isolates indicated that the CC23 lineage evolved recently by clonal expansion from a single common ancestor. Limited grouping according to geographical origin was observed, suggesting that CC23 has spread globally through multiple international transmissions. Conversely, hypervirulent K2 strains clustered in genetically unrelated groups. Strikingly, homologues of a large virulence plasmid were detected in all hvKP clonal lineages, indicating a key role in K. pneumoniae hypervirulence. The plasmid encodes two siderophores, aerobactin and salmochelin, and RmpA (regulator of the mucoid phenotype); all these factors were found to be restricted to hvKP isolates. Genomic comparisons revealed additional factors specifically associated with CC23. These included a distinct variant of a genomic island encoding yersiniabactin, colibactin, and microcin E492. Furthermore, additional novel genomic regions unique to CC23 were revealed which may also be involved in the increased virulence of this important clonal lineage. IMPORTANCE During the last 3 decades, hypervirulent Klebsiella pneumoniae (hvKP) isolates have emerged, causing severe community-acquired infections primarily in the form of pyogenic liver abscesses. This syndrome has so far primarily been found in Southeast Asia, but increasing numbers of cases are being reported worldwide, indicating that the syndrome is turning into a globally emerging disease. We applied whole-genome sequencing to a collection of K. pneumoniae clinical isolates to reveal the phylogenetic background of hvKP and to identify genetic factors associated with the increased virulence. The hvKP isolates primarily belonged to clonal complex 23 (CC23), and this clonal lineage was revealed to be clearly distinct from nonhypervirulent strains. A specific virulence plasmid was found to be associated with hypervirulence, and novel genetic determinants uniquely associated with CC23 were identified. Our findings extend the understanding of the genetic background of the emergence of hvKP clones. During the last 3 decades, hypervirulent Klebsiella pneumoniae (hvKP) isolates have emerged, causing severe community-acquired infections primarily in the form of pyogenic liver abscesses. This syndrome has so far primarily been found in Southeast Asia, but increasing numbers of cases are being reported worldwide, indicating that the syndrome is turning into a globally emerging disease. We applied whole-genome sequencing to a collection of K. pneumoniae clinical isolates to reveal the phylogenetic background of hvKP and to identify genetic factors associated with the increased virulence. The hvKP isolates primarily belonged to clonal complex 23 (CC23), and this clonal lineage was revealed to be clearly distinct from nonhypervirulent strains. A specific virulence plasmid was found to be associated with hypervirulence, and novel genetic determinants uniquely associated with CC23 were identified. Our findings extend the understanding of the genetic background of the emergence of hvKP clones.


Antimicrobial Agents and Chemotherapy | 2010

Cloning and Occurrence of czrC, a Gene Conferring Cadmium and Zinc Resistance in Methicillin-Resistant Staphylococcus aureus CC398 Isolates

Lina Cavaco; Henrik Hasman; Marc Stegger; Paal Skytt Andersen; Robert Skov; A. C. Fluit; Teruyo Ito; Frank Møller Aarestrup

ABSTRACT We recently reported a phenotypic association between reduced susceptibility to zinc and methicillin resistance in Staphylococcus aureus CC398 isolates from Danish swine (F. M. Aarestrup, L. M. Cavaco, and H. Hasman, Vet. Microbiol. 142:455-457, 2009). The aim of this study was to identify the genetic determinant causing zinc resistance in CC398 and examine its prevalence in isolates of animal and human origin. Based on the sequence of the staphylococcal cassette chromosome mec (SCCmec) element from methicillin-resistant S. aureus (MRSA) CC398 strain SO385, a putative metal resistance gene was identified in strain 171 and cloned in S. aureus RN4220. Furthermore, 81 MRSA and 48 methicillin-susceptible S. aureus (MSSA) strains, isolated from pigs (31 and 28) and from humans (50 and 20) in Denmark, were tested for susceptibility to zinc chloride and for the presence of a putative resistance determinant, czrC, by PCR. The cloning of czrC confirmed that the zinc chloride and cadmium acetate MICs for isogenic constructs carrying this gene were increased compared to those for S. aureus RN4220. No difference in susceptibility to sodium arsenate, copper sulfate, or silver nitrate was observed. Seventy-four percent (n = 23) of the animal isolates and 48% (n = 24) of the human MRSA isolates of CC398 were resistant to zinc chloride and positive for czrC. All 48 MSSA strains from both human and pig origins were found to be susceptible to zinc chloride and negative for czrC. Our findings showed that czrC is encoding zinc and cadmium resistance in CC398 MRSA isolates, and that it is widespread both in humans and animals. Thus, resistance to heavy metals such as zinc and cadmium may play a role in the coselection of methicillin resistance in S. aureus.

Collaboration


Dive into the Marc Stegger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Skov

Statens Serum Institut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lance B. Price

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paal S. Andersen

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge