Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc Symons is active.

Publication


Featured researches published by Marc Symons.


Cell | 1996

Wiskott–Aldrich Syndrome Protein, a Novel Effector for the GTPase CDC42Hs, Is Implicated in Actin Polymerization

Marc Symons; Jonathan M.J. Derry; Brian Karlak; Sharon Jiang; Vanessa Lemahieu; Frank McCormick; Uta Francke; Arie Abo

The Rho family of GTPases control diverse biological processes, including cell morphology and mitogenesis. We have identified WASP, the protein that is defective in Wiskott-Aldrich syndrome (WAS), as a novel effector for CDC42Hs, but not for the other Rho family members, Rac and Rho. This interaction is dependent on the presence of the G protein-binding domain. Cellular expression of epitope-tagged WASP produces clusters of WASP that are highly enriched in polymerized actin. This clustering is not observed with a C-terminally deleted WASP and is inhibited by coexpression with dominant negative CDC42Hs-N17, but not with dominant negative forms of Rac or Rho. Thus, WASP provides a novel link between CDC42Hs and the actin cytoskeleton, which suggests a molecular mechanism for many of the cellular abnormalities in WAS. The WASP sequence contains two novel domains that are homologous to other proteins involved in action organization.


Current Biology | 1995

PDGF stimulates an increase in GTP–Rac via activation of phosphoinositide 3-kinase

Phillip T. Hawkins; Alicia Eguinoa; Rong-Guo Qiu; David Stokoe; Frank T. Cooke; Rhodri Walters; Stefan Wennström; Lena Claesson-Welsh; Tony Evans; Marc Symons; Len Stephens

BACKGROUND Phosphoinositide 3-kinases (PI 3-kinases) are thought to play an important role in coordinating the responses elicited by a variety of growth factors, oncogene products and inflammatory stimuli. These responses include activation of membrane ruffling, chemotaxis, glucose transport, superoxide production, neurite outgrowth and pp70 S6 kinase. Some of these responses are also known to be regulated by Rac, a small GTP-binding protein related to Ras. Neither the transducing elements upstream of Rac, nor those downstream of PI 3-kinase, have been defined. RESULTS We show here that platelet-derived growth factor (PDGF) can stimulate an increase in the level of GTP-Rac by at least two distinct mechanisms: firstly, by increased guanine nucleotide exchange; and secondly, by inhibition of a Rac GTPase activity. The first of these mechanisms is essential for the activation of Rac, and we show that it is dependent upon PDGR-stimulated synthesis of phosphatidylinositol (3,4,5)-trisphosphate. CONCLUSIONS These results suggest that Rac activation lies downstream of PI 3-kinase activation on a PDGF-stimulated signalling pathway. Furthermore, as Rac has been implicated in at least two diverse cellular responses that are also though to require activation of PI 3-kinase--a reorganization of the actin cytoskeleton known as membrane ruffling and the neutrophil oxidative burst--these results suggest that Rac may be a major effector protein for the PI 3-kinase signalling pathway in many cell types.


Journal of Cell Biology | 2005

Molecular mechanisms of invadopodium formation: the role of the N-WASP–Arp2/3 complex pathway and cofilin

Hideki Yamaguchi; Mike Lorenz; Stephan J. Kempiak; Corina Sarmiento; Salvatore J. Coniglio; Marc Symons; Jeffrey E. Segall; Robert J. Eddy; Hiroaki Miki; Tadaomi Takenawa; John Condeelis

Invadopodia are actin-rich membrane protrusions with a matrix degradation activity formed by invasive cancer cells. We have studied the molecular mechanisms of invadopodium formation in metastatic carcinoma cells. Epidermal growth factor (EGF) receptor kinase inhibitors blocked invadopodium formation in the presence of serum, and EGF stimulation of serum-starved cells induced invadopodium formation. RNA interference and dominant-negative mutant expression analyses revealed that neural WASP (N-WASP), Arp2/3 complex, and their upstream regulators, Nck1, Cdc42, and WIP, are necessary for invadopodium formation. Time-lapse analysis revealed that invadopodia are formed de novo at the cell periphery and their lifetime varies from minutes to several hours. Invadopodia with short lifetimes are motile, whereas long-lived invadopodia tend to be stationary. Interestingly, suppression of cofilin expression by RNA interference inhibited the formation of long-lived invadopodia, resulting in formation of only short-lived invadopodia with less matrix degradation activity. These results indicate that EGF receptor signaling regulates invadopodium formation through the N-WASP–Arp2/3 pathway and cofilin is necessary for the stabilization and maturation of invadopodia.


Molecular and Cellular Biology | 1997

Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways.

John K. Westwick; Que T. Lambert; Geoffrey J. Clark; Marc Symons; L. Van Aelst; Richard G. Pestell; Channing J. Der

Rac1 and RhoA are members of the Rho family of Ras-related proteins and function as regulators of actin cytoskeletal organization, gene expression, and cell cycle progression. Constitutive activation of Rac1 and RhoA causes tumorigenic transformation of NIH 3T3 cells, and their functions may be required for full Ras transformation. The effectors by which Rac1 and RhoA mediate these diverse activities, as well as the interrelationship between these events, remain poorly understood. Rac1 is distinct from RhoA in its ability to bind and activate the p65 PAK serine/threonine kinase, to induce lamellipodia and membrane ruffling, and to activate the c-Jun NH2-terminal kinase (JNK). To assess the role of PAK in Rac1 function, we identified effector domain mutants of Rac1 and Rac1-RhoA chimeric proteins that no longer bound PAK. Surprisingly, PAK binding was dispensable for Rac1-induced transformation and lamellipodium formation, as well as activation of JNK, p38, and serum response factor (SRF). However, the ability of Rac1 to bind to and activate PAK correlated with its ability to stimulate transcription from the cyclin D1 promoter. Furthermore, Rac1 activation of JNK or SRF, or induction of lamellipodia, was neither necessary nor sufficient for Rac1 transforming activity. Finally, the signaling pathways that mediate Rac1 activation of SRF or JNK were distinct from those that mediate Rac1 induction of lamellipodia. Taken together, these observations suggest that Rac1 regulates at least four distinct effector-mediated functions and that multiple pathways may contribute to Rac1-induced cellular transformation.


Molecular and Cellular Biology | 1997

Cdc42 regulates anchorage-independent growth and is necessary for Ras transformation.

Rong-Guo Qiu; Arie Abo; Frank McCormick; Marc Symons

The Rho family members Cdc42, Rac, and Rho play a central role in the organization of the actin cytoskeleton and regulate transcription. Whereas Rac and Rho have been implicated in transformation by oncogenic Ras, the role of Cdc42 in this process remains unknown. In this study, we found that Rat1 fibroblasts expressing constitutively active V12-Cdc42 were anchorage independent and proliferated in nude mice but failed to show enhanced growth in low serum. Similar to V12-Rac1-expressing Rat1 fibroblasts, V12-Cdc42 lines displayed a high frequency of multinucleated cells. Interestingly, coexpression of dominant negative N17-Rac1 blocked the V12-Cdc42-induced multinucleated phenotype but not growth in soft agar, indicating that Cdc42 controls anchorage independence in a Rac-independent fashion. We also showed that dominant negative N17-Cdc42 inhibited Ras focus formation and anchorage-independent growth and caused reversion of the transformed morphology, indicating that Cdc42 is necessary for Ras transformation. N17-Cdc42 caused only partial inhibition of Ras-induced low-serum growth, however. In contrast, whereas N17-Rac1 also effectively inhibited Ras-induced anchorage independence, it did not revert the morphology of Ras-transformed cells. N17-Rac1 strongly inhibited low-serum growth of Ras-transformed cells, however. Together, these data provide a novel function for Cdc42 in cell proliferation and indicate that Cdc42 and Rac play distinct roles in growth control and Ras transformation.


Oncogene | 2005

Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion.

Amanda Y. Chan; Salvatore J. Coniglio; Ya-yu Chuang; David Michaelson; Ulla G. Knaus; Mark R. Philips; Marc Symons

Members of the Rho family of small GTPases have been shown to be involved in tumorigenesis and metastasis. Currently, most of the available information on the function of Rho proteins in malignant transformation is based on the use of dominant-negative mutants of these GTPases. The specificity of these dominant-negative mutants is limited however. In this study, we used small interfering RNA directed against either Rac1 or Rac3 to reduce their expression specifically. In line with observations using dominant-negative Rac1 in other cell types, we show that RNA interference-mediated depletion of Rac1 strongly inhibits lamellipodia formation, cell migration and invasion in SNB19 glioblastoma cells. Surprisingly however, Rac1 depletion has a much smaller inhibitory effect on SNB19 cell proliferation and survival. Interestingly, whereas depletion of Rac3 strongly inhibits SNB19 cell invasion, it does not affect lamellipodia formation and has only minor effects on cell migration and proliferation. Similar results were obtained in BT549 breast carcinoma cells. Thus, functional analysis of Rac1 and Rac3 using RNA interference reveals a critical role for these GTPases in the invasive behavior of glioma and breast carcinoma cells.


Cell | 1995

Rac mediates growth factor-induced arachidonic acid release

Maikel P. Peppelenbosch; Rong-Guo Qiu; Alicia M.M de Vries-Smits; Leon G.J. Tertoolen; Siegfried W. de Laat; Frank McCormick; Alan Hall; Marc Symons; Johannes L. Bos

Growth factor-induced stress fiber formation involves signal transduction through Rac and Rho proteins and production of leukotrienes from arachidonic acid metabolism. In exploring the relationship between these pathways, we found that Rac is essential for EGF-induced arachidonic acid production and subsequent generation of leukotrienes and that Rac V12, a constitutively activated mutant of Rac, generates leukotrienes in a growth factor-independent manner. Leukotrienes generated by EGF or Rac V12 are necessary and sufficient for stress fiber formation. Furthermore, leukotriene-dependent stress fiber formation requires Rho proteins. We have therefore identified elements of a pathway from growth factor receptors that includes Rac, arachidonic acid production, arachidonic acid metabolism to leukotrienes, and leukotriene-dependent Rho activation. This appears to be the major pathway by which Rac influences Rho-dependent cytoskeleton rearrangements.


Molecular Medicine | 2012

Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling.

Salvatore J. Coniglio; Eliseo A. Eugenin; Kostantin Dobrenis; E. Richard Stanley; Brian West; Marc Symons; Jeffrey E. Segall

Glioblastoma multiforme is a deadly cancer for which current treatment options are limited. The ability of glioblastoma tumor cells to infiltrate the surrounding brain parenchyma critically limits the effectiveness of current treatments. We investigated how microglia, the resident macrophages of the brain, stimulate glioblastoma cell invasion. We first examined the ability of normal microglia from C57Bl/6J mice to stimulate GL261 glioblastoma cell invasion in vitro. We found that microglia stimulate the invasion of GL261 glioblastoma cells by approximately eightfold in an in vitro invasion assay. Pharmacological inhibition of epidermal growth factor receptor (EGFR) strongly inhibited microglia-stimulated invasion. Furthermore, blockade of colony stimulating factor 1 receptor (CSF-1R) signaling using ribonucleic acid (RNA) interference or pharmacological inhibitors completely inhibited microglial enhancement of glioblastoma invasion. GL261 cells were found to constitutively secrete CSF-1, the levels of which were unaffected by epidermal growth factor (EGF) stimulation, EGFR inhibition or coculture with microglia. CSF-1 only stimulated microglia invasion, whereas EGF only stimulated glioblastoma cell migration, demonstrating a synergistic interaction between these two cell types. Finally, using PLX3397 (a CSF-1R inhibitor that can cross the blood-brain barrier) in live animals, we discovered that blockade of CSF-1R signaling in vivo reduced the number of tumor-associated microglia and glioblastoma invasion. These data indicate that glioblastoma and microglia interactions mediated by EGF and CSF-1 can enhance glioblastoma invasion and demonstrate the possibility of inhibiting glioblastoma invasion by targeting glioblastoma-associated microglia via inhibition of the CSF-1R.


Cancer Research | 2006

Increased Fibroblast Growth Factor-Inducible 14 Expression Levels Promote Glioma Cell Invasion via Rac1 and Nuclear Factor-κB and Correlate with Poor Patient Outcome

Nhan L. Tran; Wendy S. McDonough; Benjamin A. Savitch; Shannon P. Fortin; Jeffrey A. Winkles; Marc Symons; Mitsutoshi Nakada; Heather E. Cunliffe; Galen Hostetter; Dominique B. Hoelzinger; Jessica L. Rennert; Jennifer S. Michaelson; Linda C. Burkly; Christopher A. Lipinski; Joseph C. Loftus; Luigi Mariani; Michael E. Berens

Glial tumors progress to malignant grades by heightened proliferation and relentless dispersion throughout the central nervous system. Understanding genetic and biochemical processes that foster these behaviors is likely to reveal specific and effective targets for therapeutic intervention. Our current report shows that the fibroblast growth factor-inducible 14 (Fn14), a member of the tumor necrosis factor (TNF) receptor superfamily, is expressed at high levels in migrating glioma cells in vitro and invading glioma cells in vivo. Forced Fn14 overexpression stimulates glioma cell migration and invasion, and depletion of Rac1 by small interfering RNA inhibits this cellular response. Activation of Fn14 signaling by the ligand TNF-like weak inducer of apoptosis (TWEAK) stimulates migration and up-regulates expression of Fn14; this TWEAK effect requires Rac1 and nuclear factor-kappaB (NF-kappaB) activity. The Fn14 promoter region contains NF-kappaB binding sites, which mediate positive feedback causing sustained overexpression of Fn14 and enduring glioma cell invasion. Furthermore, Fn14 gene expression levels increase with glioma grade and inversely correlate with patient survival. These results show that the Fn14 cascade operates as a positive feedback mechanism for elevated and sustained Fn14 expression. Such a feedback loop argues for aggressive targeting of the Fn14 axis as a unique and specific driver of glioma malignant behavior.


Cancer Research | 2004

Role of Synaptojanin 2 in Glioma Cell Migration and Invasion

Ya Yu Chuang; Nhan L. Tran; Nicole Rusk; Mitsutoshi Nakada; Michael E. Berens; Marc Symons

The small GTPase Rac1 is thought to play an important role in cell migration and invasion. We have previously identified synaptojanin 2, a phosphoinositide phosphatase, as an effector of Rac1. Here, we show that small interfering RNA-mediated depletion of either Rac1 or synaptojanin 2 inhibits invasion of SNB19 and U87MG glioblastoma cells through Matrigel and rat brain slices. Depletion of Rac1 or synaptojanin 2 also inhibits migration of SNB19 and U87MG cells on glioma-derived extracellular matrix. In addition, we found that depletion of Rac1 or synaptojanin 2 inhibits the formation of lamellipodia and invadopodia, specialized membrane structures that are thought to be involved in extracellular matrix degradation. These results suggest that synaptojanin 2 contributes to the role of Rac1 in cell invasion and migration by regulating the formation of invadopodia and lamellipodia. This study also identifies synaptojanin 2 as a novel potential target for therapeutic intervention in malignant tumors.

Collaboration


Dive into the Marc Symons's collaboration.

Top Co-Authors

Avatar

Rosamaria Ruggieri

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda Chan

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Bettie M. Steinberg

North Shore-LIJ Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael E. Berens

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Samuel Z. Soffer

North Shore-LIJ Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Channing J. Der

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge