Marc Tjwa
Goethe University Frankfurt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marc Tjwa.
Nature Medicine | 2002
Aernout Luttun; Marc Tjwa; Lieve Moons; Yan Wu; Anne Angelillo-Scherrer; Fang Liao; Janice A. Nagy; Andrea T. Hooper; Josef Priller; Bert De Klerck; Veerle Compernolle; Evis Daci; Peter Bohlen; Mieke Dewerchin; Jean Marc Herbert; Roy A. Fava; Patrick Matthys; Geert Carmeliet; Desire Collen; Harold F. Dvorak; Daniel J. Hicklin; Peter Carmeliet
The therapeutic potential of placental growth factor (PlGF) and its receptor Flt1 in angiogenesis is poorly understood. Here, we report that PlGF stimulated angiogenesis and collateral growth in ischemic heart and limb with at least a comparable efficiency to vascular endothelial growth factor (VEGF). An antibody against Flt1 suppressed neovascularization in tumors and ischemic retina, and angiogenesis and inflammatory joint destruction in autoimmune arthritis. Anti-Flt1 also reduced atherosclerotic plaque growth and vulnerability, but the atheroprotective effect was not attributable to reduced plaque neovascularization. Inhibition of VEGF receptor Flk1 did not affect arthritis or atherosclerosis, indicating that inhibition of Flk1-driven angiogenesis alone was not sufficient to halt disease progression. The anti-inflammatory effects of anti-Flt1 were attributable to reduced mobilization of bone marrow–derived myeloid progenitors into the peripheral blood; impaired infiltration of Flt1-expressing leukocytes in inflamed tissues; and defective activation of myeloid cells. Thus, PlGF and Flt1 constitute potential candidates for therapeutic modulation of angiogenesis and inflammation.
Science | 2009
Angelika Bonauer; Guillaume Carmona; Masayoshi Iwasaki; Marina Mione; Masamichi Koyanagi; Ariane Fischer; Jana Burchfield; Henrik Fox; Carmen Doebele; Kisho Ohtani; Emmanouil Chavakis; Michael Potente; Marc Tjwa; Carmen Urbich; Andreas M. Zeiher; Stefanie Dimmeler
Of Life, Limb, and a Small RNA Gene expression in mammals is controlled not only by proteins but by small noncoding RNAs called microRNAs. The involvement of these RNAs provides powerful clues about the molecular origins of human diseases and how they might be treated. Ischemic diseases arise from an inadequate blood supply. Bonauer et al. (p. 1710, published online 21 May) find that a specific microRNA that is expressed in the cells lining blood vessels (called miR-92a) functions to repress the growth of new blood vessels. MiR-92a probably acts through effects on expression of integrins, proteins involved in cell adhesion and migration. In mouse models in which an inadequate blood supply had caused damage either to heart or limb muscle, therapeutic inhibition of miR-92a led to an increase in blood vessel density in the damaged tissues and enhanced functional recovery. Inhibition of a microRNA that represses blood vessel growth enhances the recovery of tissue damaged by an inadequate blood supply. MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression by binding to target messenger RNAs (mRNAs), leading to translational repression or degradation. Here, we show that the miR-17~92 cluster is highly expressed in human endothelial cells and that miR-92a, a component of this cluster, controls the growth of new blood vessels (angiogenesis). Forced overexpression of miR-92a in endothelial cells blocked angiogenesis in vitro and in vivo. In mouse models of limb ischemia and myocardial infarction, systemic administration of an antagomir designed to inhibit miR-92a led to enhanced blood vessel growth and functional recovery of damaged tissue. MiR-92a appears to target mRNAs corresponding to several proangiogenic proteins, including the integrin subunit alpha5. Thus, miR-92a may serve as a valuable therapeutic target in the setting of ischemic disease.
Nature Medicine | 2002
Veerle Compernolle; Koen Brusselmans; Till Acker; Peter Hoet; Marc Tjwa; Heike Beck; Stephane Plaisance; Yuval Dor; Eli Keshet; Florea Lupu; Benoit Nemery; Mieke Dewerchin; Paul P. Van Veldhoven; Karl H. Plate; Lieve Moons; Desire Collen; Peter Carmeliet
Respiratory distress syndrome (RDS) due to insufficient production of surfactant is a common and severe complication of preterm delivery. Here, we report that loss of the hypoxia-inducible transcription factor-2α (HIF-2α) caused fatal RDS in neonatal mice due to insufficient surfactant production by alveolar type 2 cells. VEGF, a target of HIF-2α, regulates fetal lung maturation: because VEGF levels in alveolar cells were reduced in HIF-2α-deficient fetuses; mice with a deficiency of the VEGF164 and VEGF188 isoforms or of the HIF-binding site in the VEGF promotor died of RDS; intrauterine delivery of anti-VEGF-receptor-2 antibodies caused RDS and VEGF stimulated production of surfactant proteins by cultured type 2 pneumocytes. Intrauterine delivery or postnatal intratracheal instillation of VEGF stimulated conversion of glycogen to surfactant and protected preterm mice against RDS. The pneumotrophic effect of VEGF may have therapeutic potential for lung maturation in preterm infants.
Nature Genetics | 2008
Julián Aragonés; Martin Schneider; Katie Van Geyte; Peter Fraisl; Tom Dresselaers; Massimiliano Mazzone; Ruud Dirkx; Serena Zacchigna; Hélène Lemieux; Nam Ho Jeoung; Diether Lambrechts; Tammie Bishop; Peggy Lafuste; Antonio Diez-Juan; Sarah K. Harten; Pieter Van Noten; Katrien De Bock; Carsten Willam; Marc Tjwa; Alexandra Grosfeld; Rachel Navet; Lieve Moons; Thierry Vandendriessche; Christophe Deroose; Bhathiya Wijeyekoon; Johan Nuyts; Bénédicte F. Jordan; Robert Silasi-Mansat; Florea Lupu; Mieke Dewerchin
HIF prolyl hydroxylases (PHD1–3) are oxygen sensors that regulate the stability of the hypoxia-inducible factors (HIFs) in an oxygen-dependent manner. Here, we show that loss of Phd1 lowers oxygen consumption in skeletal muscle by reprogramming glucose metabolism from oxidative to more anaerobic ATP production through activation of a Pparα pathway. This metabolic adaptation to oxygen conservation impairs oxidative muscle performance in healthy conditions, but it provides acute protection of myofibers against lethal ischemia. Hypoxia tolerance is not due to HIF-dependent angiogenesis, erythropoiesis or vasodilation, but rather to reduced generation of oxidative stress, which allows Phd1-deficient myofibers to preserve mitochondrial respiration. Hypoxia tolerance relies primarily on Hif-2α and was not observed in heterozygous Phd2-deficient or homozygous Phd3-deficient mice. Of medical importance, conditional knockdown of Phd1 also rapidly induces hypoxia tolerance. These findings delineate a new role of Phd1 in hypoxia tolerance and offer new treatment perspectives for disorders characterized by oxidative stress.
Journal of Thrombosis and Haemostasis | 2003
Monica Autiero; Aernout Luttun; Marc Tjwa; Peter Carmeliet
Summary. In contrast to VEGF and its receptor VEGFR‐2, PlGF and its receptor VEGFR‐1 have been largely neglected and therefore their potential for therapy has not been previously explored. In this review, we describe the molecular properties of PlGF and VEGFR‐1 and how this translates into an important role for PlGF in the angiogenic switch in pathological angiogenesis, by interacting with VEGFR‐1 and synergizing with VEGF. PlGF was effective in the growth of new and stable vessels in cardiac and limb ischemia, through its action on different cell types (i.e. endothelial, smooth muscle and inflammatory cells and their precursors) that play a cardinal role in blood vessel formation. Accordingly, blocking its receptor VEGFR‐1 with monoclonal antibodies (anti‐VEGFR‐1 mAb), expressed on al these cell types, successfully attenuated blood vessel formation during cancer, ischemic retinopathy and rheumatoid arthritis. In addition, while blocking this receptor was effective in reducing inflammatory disorders like atherosclerosis and rheumatoid arthritis, blocking the anti‐angiogenic receptor VEGFR‐2 was without effect. This indicates that in the latter diseases the beneficial effects of anti‐VEGFR1 mAb were mainly due to its effect on inflammatory cells. Importantly, VEGFR‐1 was also present on hematopoietic stem/progenitor cells, the precursors of inflammatory cells. Thus, these preclinical studies show proof‐of‐principle that PlGF and VEGFR‐1 are promising therapeutic targets to treat angiogenesis and inflammation related disorders. Clinical trials will reveal whether this is also true for patients.
Journal of Clinical Investigation | 2003
Koenraad Brusselmans; Veerle Compernolle; Marc Tjwa; Michael S. Wiesener; Patrick H. Maxwell; Desire Collen; Peter Carmeliet
Chronic hypoxia induces pulmonary vascular remodeling, leading to pulmonary hypertension, right ventricular hypertrophy, and heart failure. Heterozygous deficiency of hypoxia-inducible factor-1alpha (HIF-1alpha), which mediates the cellular response to hypoxia by increasing expression of genes involved in erythropoiesis and angiogenesis, has been previously shown to delay hypoxia-induced pulmonary hypertension. HIF-2alpha is a homologue of HIF-1alpha and is abundantly expressed in the lung, but its role in pulmonary hypertension remains unknown. Therefore, we analyzed the pulmonary response of WT and viable heterozygous HIF-2alpha-deficient (Hif2alpha(+/-)) mice after exposure to 10% O(2) for 4 weeks. In contrast to WT mice, Hif2alpha(+/-) mice were fully protected against pulmonary hypertension and right ventricular hypertrophy, unveiling a critical role of HIF-2alpha in hypoxia-induced pulmonary vascular remodeling. Pulmonary expression levels of endothelin-1 and plasma catecholamine levels were increased threefold and 12-fold respectively in WT but not in Hif2alpha(+/-) mice after hypoxia, suggesting that HIF-2alpha-mediated upregulation of these vasoconstrictors contributes to the development of hypoxic pulmonary vascular remodeling.
Circulation Research | 2004
Stefan Janssens; Peter Pokreisz; Luc Schoonjans; Marijke Pellens; Pieter Vermeersch; Marc Tjwa; Peter Jans; Marielle Scherrer-Crosbie; Michael H. Picard; Zsolt Szelid; Hilde Gillijns; Frans Van de Werf; Desire Collen; Kenneth D. Bloch
Nitric oxide (NO) is an important modulator of cardiac performance and left ventricular (LV) remodeling after myocardial infarction (MI). We tested the effect of cardiomyocyte-restricted overexpression of one NO synthase isoform, NOS3, on LV remodeling after MI in mice. LV structure and function before and after permanent LAD coronary artery ligation were compared in transgenic mice with cardiomyocyte-restricted NOS3 overexpression (NOS3-TG) and their wild-type littermates (WT). Before MI, systemic hemodynamic measurements, echocardiographic assessment of LV fractional shortening (FS), heart weight, and myocyte width (as assessed histologically) did not differ in NOS3-TG and WT mice. The inotropic response to graded doses of isoproterenol was significantly reduced in NOS3-TG mice. One week after LAD ligation, the infarcted fraction of the LV did not differ in WT and NOS3-TG mice (34 ± 4% versus 36 ± 12%, respectively). Four weeks after MI, however, end-systolic LVID was greater, and fractional shortening and maximum and minimum rates of LV pressure development were less in WT than in NOS3-TG mice. LV weight/body weight ratio was greater in WT than in NOS3-TG mice (5.3 ± 0.2 versus 4.6 ± 0.5 mg/g; P < 0.01). Myocyte width in noninfarcted myocardium was greater in WT than in NOS3-TG mice (18.8 ± 2.0 versus 16.6 ± 1.6 μm; P < 0.05), whereas fibrosis in noninfarcted myocardium was similar in both genotypes. Cardiomyocyte-restricted overexpression of NOS3 limits LV dysfunction and remodeling after MI, in part by decreasing myocyte hypertrophy in noninfarcted myocardium.
Annals of the New York Academy of Sciences | 2002
Aernout Luttun; Marc Tjwa; Peter Carmeliet
Abstract: Efforts to therapeutically stimulate or inhibit vessel growth have been primarily focused on vascular endothelial growth factor (VEGF) and its receptor VEGFR‐2 (Flk‐1), while little attention has been devoted to the therapeutic potential for angiogenic disorders of placental growth factor (PlGF), a VEGF family member, and its receptor VEGFR‐1 (Flt‐1). However, recent developments and insights could shift that focus to P1GF and Flt‐1. Indeed, PlGF stimulated angiogenesis and collateral growth in ischemic heart and limb with at least a comparable efficiency to VEGF and did not cause side effects associated with VEGF, such as edema or hypotension. An anti‐Flt‐1 antibody suppressed neovascularization in tumors and ischemic retina, and angiogenesis and inflammatory joint destruction in arthritis. The anti‐Flt‐1 antibody also reduced atherosclerotic plaque growth and vulnerability, but the atheroprotective effect was not due to reduced plaque neovascularization. The anti‐inflammatory effects of the anti‐Flt‐1 antibody were attributable to a reduced mobilization of bone marrow‐derived myeloid progenitors into the peripheral blood, a reduced mobilization/differentiation (and impaired infiltration) of Flt‐1‐expressing leukocytes into inflamed tissues, and a defective activation of myeloid cells. Thus, PlGF and Flt‐1 constitute potential candidates for therapeutic modulation of angiogenesis and inflammation.
Genes & Development | 2008
Berta Vidal; Antonio Serrano; Marc Tjwa; Mònica Suelves; Esther Ardite; Roberta De Mori; Bernat Baeza-Raja; María Martínez de Lagrán; Peggy Lafuste; Vanessa Ruiz-Bonilla; Mercè Jardí; Romain K. Gherardi; Christo Christov; Mara Dierssen; Peter Carmeliet; Jay L. Degen; Mieke Dewerchin; Pura Muñoz-Cánoves
In the fatal degenerative Duchenne muscular dystrophy (DMD), skeletal muscle is progressively replaced by fibrotic tissue. Here, we show that fibrinogen accumulates in dystrophic muscles of DMD patients and mdx mice. Genetic loss or pharmacological depletion of fibrinogen in these mice reduced fibrosis and dystrophy progression. Our results demonstrate that fibrinogen-Mac-1 receptor binding, through induction of IL-1beta, drives the synthesis of transforming growth factor-beta (TGFbeta) by mdx macrophages, which in turn induces collagen production in mdx fibroblasts. Fibrinogen-produced TGFbeta further amplifies collagen accumulation through activation of profibrotic alternatively activated macrophages. Fibrinogen, by engaging its alphavbeta3 receptor on fibroblasts, also directly promotes collagen synthesis. These data unveil a profibrotic role of fibrinogen deposition in muscle dystrophy.
Journal of Clinical Investigation | 2005
Xuri Li; Marc Tjwa; Lieve Moons; Pierre Fons; Agnès Noël; Annelii Ny; Jian Min Zhou; Johan Lennartsson; Hong Li; Aernout Luttun; Annica Ponten; Laetitia Devy; Ann Bouché; Hideyasu Oh; Ann Manderveld; Silvia Blacher; David Communi; Pierre Savi; Françoise Bono; Mieke Dewerchin; Jean-Michel Foidart; Monica Autiero; Jean-Marc Herbert; Desire Collen; Carl-Henrik Heldin; Ulf J. Eriksson; Peter Carmeliet
The angiogenic mechanism and therapeutic potential of PDGF-CC, a recently discovered member of the VEGF/PDGF superfamily, remain incompletely characterized. Here we report that PDGF-CC mobilized endothelial progenitor cells in ischemic conditions; induced differentiation of bone marrow cells into ECs; and stimulated migration of ECs. Furthermore, PDGF-CC induced the differentiation of bone marrow cells into smooth muscle cells and stimulated their growth during vessel sprouting. Moreover, delivery of PDGF-CC enhanced postischemic revascularization of the heart and limb. Modulating the activity of PDGF-CC may provide novel opportunities for treating ischemic diseases.