Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc W. Kirschner is active.

Publication


Featured researches published by Marc W. Kirschner.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS

Scott A. Gerber; John Rush; Olaf Stemman; Marc W. Kirschner; Steven P. Gygi

A need exists for technologies that permit the direct quantification of differences in protein and posttranslationally modified protein expression levels. Here we present a strategy for the absolute quantification (termed AQUA) of proteins and their modification states. Peptides are synthesized with incorporated stable isotopes as ideal internal standards to mimic native peptides formed by proteolysis. These synthetic peptides can also be prepared with covalent modifications (e.g., phosphorylation, methylation, acetylation, etc.) that are chemically identical to naturally occurring posttranslational modifications. Such AQUA internal standard peptides are then used to precisely and quantitatively measure the absolute levels of proteins and posttranslationally modified proteins after proteolysis by using a selected reaction monitoring analysis in a tandem mass spectrometer. In the present work, the AQUA strategy was used to (i) quantify low abundance yeast proteins involved in gene silencing, (ii) quantitatively determine the cell cycle-dependent phosphorylation of Ser-1126 of human separase protein, and (iii) identify kinases capable of phosphorylating Ser-1501 of separase in an in vitro kinase assay. The methods described here represent focused, alternative approaches for studying the dynamically changing proteome.


Cell | 1982

A major developmental transition in early xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage

John W. Newport; Marc W. Kirschner

The Xenopus embryo undergoes 12 rapid synchronous cleavages followed by a period of slower asynchronous divisions more typical of somatic cells. This change in cell cleavage has been termed the midblastula transition (MBT). We show that at the MBT the blastomeres become motile and transcriptionally active for the first time. We have investigated the timing of the MBT and found that it does not depend on cell division, on time since fertilization or on a counting mechanism involving the sequential modification of DNA. Rather, the timing of the MBT depends on reaching a critical ratio of nucleus to cytoplasm. We view the MBT as a consequence of the titration of some substance, originally present in the egg, by the exponentially increasing nuclear material. When this substance is exhausted a new cell program is engaged, leading to the acquisition of several new cell properties.


Cell | 1980

Number and evolutionary conservation of α- and β-tubulin and cytoplasmic β- and γ-actin genes using specific cloned cDNA probes

Don W. Cleveland; Margaret A. Lopata; Raymond J. MacDonald; Nicholas J. Cowan; William J. Rutter; Marc W. Kirschner

Abstract Bacterial clones containing inserted DNA sequences specific for α-tubulin, β-tubulin, β-actin and γ-actin have been constructed from mRNA of embryonic chick brain. Plasmids containing approximately 75, 90 and >90%, respectively, of the sequences present in α-tubulin, β-tubulin and β-actin mRNAs have been isolated as well as clones containing parts of the extensive 3′ untranslated regions of the β- and γ-actin mRNAs. The sequences for the two tubulins do not cross hybridize. Hybridization of labeled, cloned probes for each of the tubulins with chicken DNA digested with several restriction endonucleases reveals about four fragments for α- and four for β-tubulin. This seems to be the number of genes, since both the 5′ and 3′ ends of either cloned tubulin cDNAs hybridize to at least four common fragments in genomic DNA which has been digested with restriction endonucleases. The tubulin probes are able to hybridize under stringent conditions to DNA of all vertebrate genomes tested, as well as to sea urchin DNA, but not to yeast DNA. In digested sea urchin sperm DNA there are more than 20 different fragments which hybridize to both the 5′ and 3′ ends of the tubulin cDNAs. A full-length β-actin cDNA clone hybridizes to 4–7 bands in restricted chicken DNA and cross hybridizes to DNA from every other species tested, including sea urchin and yeast. Hybridization to chicken DNA of cloned probes specific for the 3′ untranslated regions of β- and γ-actin mRNA indicates that the β sequence is present only once in the genome and the γ is present in at most three copies. Neither 3′ untranslated sequence is conserved evolutionarily.


Science | 1996

How Proteolysis Drives the Cell Cycle

Randall W. King; Raymond J. Deshaies; Jan-Michael Peters; Marc W. Kirschner

Oscillations in the activity of cyclin-dependent kinases (CDKs) promote progression through the eukaryotic cell cycle. This review examines how proteolysis regulates CDK activity—by degrading CDK activators or inhibitors—and also how proteolysis may directly trigger the transition from metaphase to anaphase. Proteolysis during the cell cycle is mediated by two distinct ubiquitin-conjugation pathways. One pathway, requiring CDC34, initiates DNA replication by degrading a CDK inhibitor. The second pathway, involving a large protein complex called the anaphase-promoting complex or cyclosome, initiates chromosome segregation and exit from mitosis by degrading anaphase inhibitors and mitotic cyclins. Proteolysis therefore drives cell cycle progression not only by regulating CDK activity, but by directly influencing chromosome and spindle dynamics.


Cell | 1999

The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly.

Rajat Rohatgi; Le Ma; Hiroaki Miki; Marco Lopez; Tomas Kirchhausen; Tadaomi Takenawa; Marc W. Kirschner

Although small GTP-binding proteins of the Rho family have been implicated in signaling to the actin cytoskeleton, the exact nature of the linkage has remained obscure. We describe a novel mechanism that links one Rho family member, Cdc42, to actin polymerization. N-WASP, a ubiquitously expressed Cdc42-interacting protein, is required for Cdc42-stimulated actin polymerization in Xenopus egg extracts. The C terminus of N-WASP binds to the Arp2/3 complex and dramatically stimulates its ability to nucleate actin polymerization. Although full-length N-WASP is less effective, its activity can be greatly enhanced by Cdc42 and phosphatidylinositol (4,5) bisphosphate. Therefore, N-WASP and the Arp2/3 complex comprise a core mechanism that directly connects signal transduction pathways to the stimulation of actin polymerization.


Nature | 2009

Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling

Shih Min A Huang; Yuji Mishina; Shanming Liu; Atwood Cheung; Frank Stegmeier; Gregory A. Michaud; Olga Charlat; Yue Zhang; Stephanie Wiessner; Marc Hild; Xiaoying Shi; Christopher J. Wilson; Craig Mickanin; Vic E. Myer; Aleem Fazal; Ronald Tomlinson; Fabrizio C. Serluca; Wenlin Shao; Hong Cheng; Michael Shultz; Christina Rau; Markus Schirle; Judith Schlegl; Sonja Ghidelli; Stephen Fawell; Chris Lu; Daniel Curtis; Marc W. Kirschner; Christoph Lengauer; Peter Finan

The stability of the Wnt pathway transcription factor β-catenin is tightly regulated by the multi-subunit destruction complex. Deregulated Wnt pathway activity has been implicated in many cancers, making this pathway an attractive target for anticancer therapies. However, the development of targeted Wnt pathway inhibitors has been hampered by the limited number of pathway components that are amenable to small molecule inhibition. Here, we used a chemical genetic screen to identify a small molecule, XAV939, which selectively inhibits β-catenin-mediated transcription. XAV939 stimulates β-catenin degradation by stabilizing axin, the concentration-limiting component of the destruction complex. Using a quantitative chemical proteomic approach, we discovered that XAV939 stabilizes axin by inhibiting the poly-ADP-ribosylating enzymes tankyrase 1 and tankyrase 2. Both tankyrase isoforms interact with a highly conserved domain of axin and stimulate its degradation through the ubiquitin-proteasome pathway. Thus, our study provides new mechanistic insights into the regulation of axin protein homeostasis and presents new avenues for targeted Wnt pathway therapies.


Cell | 1991

Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos.

Enrique Amaya; Thomas J. Musci; Marc W. Kirschner

Peptide growth factors may play a role in patterning of the early embryo, particularly in the induction of mesoderm. We have explored the role of fibroblast growth factor (FGF) in early Xenopus development by expressing a dominant negative mutant form of the FGF receptor. Using a functional assay in frog oocytes, we found that a truncated form of the receptor effectively abolished wild-type receptor function. Explants from embryos expressing this dominant negative mutant failed to induce mesoderm in response to FGF. In whole embryos the mutant receptor caused specific defects in gastrulation and in posterior development, and overexpression of a wild-type receptor could rescue these developmental defects. These results demonstrate that the FGF signaling pathway plays an important role in early embryogenesis, particularly in the formation of the posterior and lateral mesoderm.


Cell | 1982

A major developmental transition in early xenopus embryos: II. control of the onset of transcription

John W. Newport; Marc W. Kirschner

We have shown in the accompanying paper that a developmental transition occurs at the midblastula stage (cleavage 12) in Xenopus embryos, and that this midblastula transition (MBT) is apparently initiated when the ratio of nucleus to cytoplasm reaches a critical value. One manifestation of this transition is the onset of transcription. We show here that a plasmid containing a cloned gene coding for a yeast leucine tRNA comes under developmental control when injected into cleaving eggs. In pre-MBT eggs this plasmid is transiently transcribed and then becomes inactive; however, it becomes transcriptionally active again at the MBT. This pre-MBT suppression of transcription can be reversed by addition of competing DNA. The amount of DNA needed to induce premature transcription is equal to the amount of nuclear DNA present after 12 cleavages (24 ng), suggesting that the MBT is triggered by the DNA through titration of suppressor components present in the egg.


Cell | 1995

A 20s complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B

Randall W. King; Jan-Michael Peters; Stuart Tugendreich; Mark Rolfe; Philip Hieter; Marc W. Kirschner

Cyclin B is degraded at the onset of anaphase by a ubiquitin-dependent proteolytic system. We have fractionated mitotic Xenopus egg extracts to identify components required for this process. We find that UBC4 and at least one other ubiquitin-conjugating enzyme can support cyclin B ubiquitination. The mitotic specificity of cyclin ubiquitination is determined by a 20S complex that contains homologs of budding yeast CDC16 and CDC27. Because these proteins are required for anaphase in yeast and mammalian cells, we refer to this complex as the anaphase-promoting complex (APC). CDC27 antibodies deplete APC activity, while immunopurified CDC27 complexes are sufficient to complement either interphase extracts or a mixture of recombinant UBC4 and the ubiquitin-activating enzyme E1. These results suggest that APC functions as a regulated ubiquitin-protein ligase that targets cyclin B for destruction in mitosis.


Cell | 1987

Synergistic induction of mesoderm by FGF and TGF-β and the identification of an mRNA coding for FGF in the early xenopus embryo

David Kimelman; Marc W. Kirschner

The primary patterning event in early vertebrate development is the formation of the mesoderm and its subsequent induction of the neural tube. Classic experiments suggest that the vegetal region signals the animal hemisphere to diverge from the pathway of forming ectoderm to form mesoderm such as muscle. Here we show that bovine basic FGF has a limited capacity to induce muscle actin expression in animal hemisphere cells. This level of expression can be raised to levels normally induced in the embryo by another mammalian growth factor, TGF-beta, which by itself will not induce actin expression. We show that the Xenopus embryo contains an mRNA encoding a protein highly homologous to basic FGF. These results together with the identification of a maternal mRNA with strong homology to TGF-beta, suggest that molecules closely related to FGF and TGF-beta are the natural inducers of mesoderm in vertebrate development.

Collaboration


Dive into the Marc W. Kirschner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge